Cb Amplifier

Published on January 2017 | Categories: Documents | Downloads: 41 | Comments: 0 | Views: 309
of 8
Download PDF   Embed   Report

Comments

Content


The Common-Base Amplifier
Basic Circuit
Fig. 1 shows the circuit diagram of a single stage common-base amplifier. The object is to solve
for the small-signal voltage gain, input resistance, and output resistance.
Figure 1: Common-base amplifier.
DC Solution
(a) Replace the capacitors with open circuits. Look out of the 3 BJT terminals and make Thévenin
equivalent circuits as shown in Fig. 2.
V
BB
=
V
+
R
2
+V

R
1
R
1
+R
2
R
BB
= R
1
kR
2
V
EE
= V

R
EE
= R
E
V
CC
= V
+
R
CC
= R
C
(b) Make an “educated guess” for V
BE
. Write the loop equation between the V
BB
and the V
EE
nodes. To solve for I
C
, this equation is
V
BB
−V
EE
= I
B
R
BB
+V
BE
+I
E
R
EE
=
I
C
β
R
BB
+V
BE
+
I
C
α
R
EE
(c) Solve the loop equation for the currents.
I
C
= αI
E
= βI
B
=
V
BB
−V
EE
−V
BE
R
BB
/β +R
EE

(d) Verify that V
CB
> 0 for the active mode.
V
CB
= V
C
−V
B
= (V
CC
−I
C
R
CC
) −(V
BB
−I
B
R
BB
) = V
CC
−V
BB
−I
C
(R
CC
−R
BB
/β)
1
Figure 2: DC bias circuit.
Small-Signal or AC Solutions
(a) Redraw the circuit with V
+
= V

= 0 and all capacitors replaced with short circuits as shown
in Fig. 3.
Figure 3: Signal circuit.
(b) Calculate g
m
, r
π
, r
e
, and r
0
from the DC solution..
g
m
=
I
C
V
T
r
π
=
V
T
I
B
r
e
=
V
T
I
E
r
0
=
V
A
+V
CE
I
C
(c) Replace the circuits looking out of the base and emitter with Thévenin equivalent circuits
as shown in Fig. 4.
v
tb
= 0 R
tb
= 0 v
te
= v
s
R
E
R
s
+R
E
R
te
= R
s
kR
E
2
Figure 4: Signal circuit with Thévenin emitter circuit.
Exact Solution
(a) Replace the BJT in Fig. 4 with the Thévenin emitter circuit and the Norton collector circuit
as shown in Fig. 5.
Figure 5: Emitter and collector equivalent circuits.
(b) Solve for i
c(sc)
.
i
c(sc)
= −G
me
v
te
= −G
me
v
s
R
E
R
s
+R
E
G
me
=
1
R
te
+r
0
e
kr
0
αr
0
+r
0
e
r
0
+r
0
e
r
0
e
=
r
x
1 +β
+r
e
(c) Solve for v
o
.
v
o
= −i
c(sc)
r
ic
kR
C
kR
L
= G
me
v
s
R
E
R
s
+R
E
r
ic
kR
C
kR
L
r
ic
=
r
0
+r
0
e
kR
te
1 −αR
te
/ (r
0
e
+R
te
)
3
(d) Solve for the voltage gain.
A
v
=
v
o
v
s
=
R
E
R
s
+R
E
G
me
r
ic
kR
C
kR
L
(e) Solve for r
in
.
r
in
= R
1
kR
2
kr
ie
r
ie
= r
0
e
r
0
+R
tc
r
0
e
+r
0
+R
tc
/ (1 +β)
(f) Solve for r
out
.
r
out
= r
ic
kR
C
Example 1 For the CB amplifier in Fig. 1, it is given that R
s
= 100 Ω, R
1
= 120 kΩ, R
2
= 100 kΩ,
R
C
= 4.3 kΩ, R
E
= 5.6 kΩ, R
3
= 100 Ω, R
L
= 20 kΩ, V
+
= 15 V, V

= −15 V, V
BE
= 0.65 V,
β = 99, α = 0.99, r
x
= 20 Ω, V
A
= 100 V and V
T
= 0.025 V. Solve for A
v
, r
in
, and r
out
.
Solution. Because the dc bias circuit is the same as for the common-emitter amplifier example,
the dc bias values, r
e
, g
m
, r
π
, and r
0
are the same.
In the signal circuit, the Thévenin voltage and resistance seen looking out of the emitter are
given by
v
te
=
R
E
R
s
+R
E
v
s
= 0.9825v
s
R
te
= R
s
kR
E
= 98.25 Ω
The Thévenin resistances seen looking out of the base and the collector are
R
tb
= 0 R
tc
= R
C
kR
L
= 3.539 kΩ
Next, we calculate r
0
e
, G
me
, r
ic
, and r
ie
.
r
0
e
=
R
tb
+r
x
1 +β
+r
e
= 12.03 Ω G
me
=
1
R
te
+r
0
e
kr
0
αr
0
+r
0
e
r
0
+r
0
e
=
1
111.4
S
r
ic
=
r
0
+r
0
e
kR
te
1 −αR
te
/ (r
0
e
+R
te
)
= 442.3 kΩ r
ie
= r
0
e
r
0
+R
tc
r
0
e
+r
0
+R
tc
/ (1 +β)
= 12.83 Ω
The output voltage is given by
v
o
= G
me
(r
ic
kR
tc
) v
te
= G
me
(r
ic
kR
tc
)
R
E
R
s
+R
E
v
s
= 30.97v
s
Thus the voltage gain is
A
v
= 30.97
The input and output resistances are
r
in
= R
1
kR
2
kr
ib
= 12.81 Ω r
out
= r
ic
kR
C
= 4.259 kΩ
Approximate Solutions
These solutions assume that r
0
= ∞ except in calculating r
ic
. In this case, i
c(sc)
= i
0
c
= αi
0
e
= βi
b
.
4
Figure 6: Simplified T model circuit.
Simplified T Model Solution
(a) After making the Thévenin equivalent circuits looking out of the base and emitter, replace the
BJT with the simplified T model as shown in Fig. 6.
(b) Solve for i
0
c
and r
ic
.
0 −v
te
= i
0
e
¡
r
0
e
+R
te
¢
=
i
0
c
α
¡
r
0
e
+R
te
¢
=⇒i
0
c
= −v
te
α
r
0
e
+R
te
r
ic
=
r
0
+r
0
e
kR
te
1 −αR
te
/ (r
0
e
+R
te
)
(c) Solve for v
o
.
v
o
= −i
0
c
r
ic
kR
C
kR
L
= v
te
α
r
0
e
+R
te
r
ic
kR
C
kR
L
= v
s
R
E
R
s
+R
E
α
r
0
e
+R
te
r
ic
kR
C
kR
L
(d) Solve for the voltage gain.
A
v
=
v
o
v
s
=
R
s
R
s
+R
E
α
r
0
e
+R
te
r
ic
kR
C
kR
L
(e) Solve for r
ie
and r
in
.
0 −v
e
= i
0
e
r
0
e
=⇒i
0
e
= −
v
e
r
0
e
r
ie
=
v
e
−i
0
e
= r
0
e
r
in
= r
0
e
kR
E
(f) Solve for r
out
.
r
out
= r
ic
kR
C
Example 2 For Example 1, use the simplified T-model solutions to calculate the values of A
v
, r
in
,
and r
out
.
5
A
v
= 0.9825 ×
¡
8.978 × 10
−3
¢
×
¡
3.511 × 10
3
¢
= 30.97
r
in
= 12 Ω r
out
= 4.259 kΩ
π Model Solution
(a) After making the Thévenin equivalent circuits looking out of the base and emitter, replace the
BJT with the π model as shown in Fig. 7.
Figure 7: Hybrid-π model circuit.
(b) Solve for i
0
c
and r
ic
.
0 −v
te
= i
b
r
x
+v
π
+i
0
e
R
te
=
i
0
c
β
r
x
+
i
0
c
g
m
+
i
0
c
α
R
te
=⇒i
0
c
=
−v
te
r
x
β
+
1
g
m
+
R
te
α
r
ic
=
r
0
+r
0
e
kR
te
1 −αR
te
/ (r
0
e
+R
te
)
(c) Solve for v
o
.
v
o
= −i
0
c
r
ic
kR
C
kR
L
=
v
te
r
x
β
+
1
g
m
+
R
te
α
r
ic
kR
C
kR
L
= v
s
R
E
R
s
+R
E
1
r
x
β
+
1
g
m
+
R
te
α
r
ic
kR
C
kR
L
(d) Solve for the voltage gain.
A
v
=
v
o
v
s
=
R
E
R
s
+R
E
1
r
x
β
+
1
g
m
+
R
te
α
r
ic
kR
C
kR
L
(e) Solve for r
out
.
r
out
= r
ic
kR
C
6
(f) Solve for r
ie
and r
in
.
0 −v
e
= i
b
(r
x
+r
π
) =
i
0
e
1 +β
(r
x
+r
π
) =⇒i
0
e
= −v
e
1 +β
r
x
+r
π
r
ie
=
v
e
−i
0
e
=
r
x
+r
π
1 +β
r
in
= r
ie
kR
E
Example 3 For Example 1, use the π-model solutions to calculate the values of A
v
, r
in
, and r
out
.
A
v
= 0.9825 ×
¡
8.978 × 10
−3
¢
×
¡
3.539 × 10
3
¢
= 30.97
r
in
= 12 Ω r
out
= 4.259 kΩ
T Model Solution
(a) After making the Thévenin equivalent circuits looking out of the base and emitter, replace the
BJT with the T model as shown in Fig.??.
Figure 8: T model circuit.
(b) Solve for i
0
c
and r
ic
.
0 −v
te
= i
b
r
x
+i
0
e
(r
e
+R
te
) =
i
0
c
β
r
x
+
i
0
c
α
(r
e
+R
te
) =⇒i
0
c
=
−v
te
r
x
β
+
r
e
+R
te
α
r
ic
=
r
0
+r
0
e
kR
te
1 −αR
te
/ (r
0
e
+R
te
)
(c) Solve for v
o
.
v
o
= −i
0
c
r
ic
kR
C
kR
L
=
v
te
r
x
β
+
r
e
+R
te
α
r
ic
kR
C
kR
L
= v
s
R
E
R
s
+R
E
1
r
x
β
+
r
e
+R
te
α
r
ic
kR
C
kR
L
7
(d) Solve for the voltage gain.
A
v
=
v
o
v
s
=
R
E
R
s
+R
E
1
r
x
β
+
r
e
+R
te
α
r
ic
kR
C
kR
L
(e) Solve for r
ie
and r
in
.
0 −v
e
= i
b
r
x
+i
0
e
r
e
=
i
0
e
1 +β
r
x
+i
0
e
r
e
= i
0
e
µ
r
x
1 +β
+r
e

=⇒i
0
e
=
−v
e
r
x
1 +β
+r
e
r
ie
=
v
e
−i
0
e
=
r
x
1 +β
+r
e
r
in
= R
E
kr
ie
(f) Solve for r
out
.
r
out
= r
ic
kR
C
Example 4 For Example 1, use the T-model solutions to calculate the values of A
v
, r
in
, and r
out
.
A
v
= 0.9825 ×
¡
8.978 × 10
−3
¢
×
¡
3.539 × 10
3
¢
= 30.97
r
in
= 12 Ω r
out
= 4.259 kΩ
8

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close