of x

How to Submit a SMT Proposal

Published on 2 weeks ago | Categories: Documents | Downloads: 0 | Comments: 0




Presenting at a Conference Committee on Professional Development Society for Music Theory 2007 How to Write a Proposal Joseph N. Straus Graduate Center, CUNY I.

Before you start writing  A. Choose a topic 1. Seminar papers 2. Dissertation 3. Conference papers and articles by other people B. Work collaboratively 1. Advisor and professors at your school 2. Colleagues 3. Outsiders within your emerging network C. Use resources provided by SMT 1. Mentoring programs through CPD and CSW 2. CPD website D. Do a substantial amount of the actual work E. Study the Call for Papers and Papers and follow the instructions


Writing the proposal: Six generic conventions (with thanks to Frank Samarotto, Sigrun Heinzelmann, Daphne Leong, Andrew Pau, Michael Klein, Ed Gollin, and Michael Buchler)

1. State the problem (and say why it’s important and interesting). None of the four movements that fulfill the function of the traditional Scherzo and Trio in Brahms’s symphonies seem quite to fit that role. Indeed, each among the four seems to be in various ways both superficial and subtle to be unique unto itself. The third movement ofduple-meter the First Symphony resembles on its surface neither nor a minuet; as a lyric pastoral in an apparent ternary form,aitscherzo might be more appropriately characterized as an intermezzo. (Samarotto) Motivic analysis of music that does not strictly belong in either category [tonal or posttonal], such as music of the early 20 th Century, poses difficulties not sufficiently addressed by a single tradition. (Heinzelmann) The attention paid by the music-theoretic community to Milton Babbitt’s oeuvre oeuvre has  has focused largely on structural attributes, and to a lesser degree on listening experience and critical reaction, neglecting in large part performing experience (particularly that of performers who are not also theorists). (Leong) 2. Connect with the literature (what you draw on; how you differ). The “scordatura fantasy” in Lewin 1998 explored the question: given two specific set classes, what are the possible possible voice leadings between them? Our inquiry into Berg’s op. 5, no. 1 suggests a variation of the same question: given a specific trichordal set class and a specific voice leading, what are the possible set-class destinations? (Pau)


Initial entrée into this aspect of the piece might be provided by an intriguing but enigmatic analysis of the opening in Schenker’s Free Composition. Composition. (Samarotto) Building on the Matthew Santa’s concept of Modular Transformation, Transformation, I define eight types of motivic transformations, illustrate them with examples from Bach to Bartók, and introduce a new graphic representation of motivic transformation able to show changes of pitch as well as rhythm. (Heinzelmann) In his recent article on narrative archetypes, Bryon Almén borrows James Liszka’s semiotic theory of myth and applies it to the study of musical narrative (Almén 2003; Liszka 1989). Although Almén’s article holds much promise, it focuses primarily on Liszka’s method of structuring myth while largely ignoring a greater concern to show how myths are involved with cultural values. The proposed paper, therefore, seeks to expand  Almén’s theory to demonstrate dem onstrate how musical music al narratives confront both musical and cultural values. (Klein) 3. Identify your your solution to the problem. Thesis statement (“I will show…”). What’s new here? In this paper, I submit that in certain atonal pieces, a coherent musical structure is created through the use of consistency in voice leading, rather than through consistency in harmony. In exploring my thesis, I will focus on a specific class of voice leading, the chromatic wedge. (Pau) In the following analysis, I will argue that Brahms has infused a traditionally segmented form withhas a fluidity and remade developmental impetus scherzo more associated with sonata movements. Brahms so greatly the symphonic that the entire movement seems almost to fall within a single breath. An even greater achievement is that this remaking seems to occur not from without, by smoothing over formal divisions, for instance, but from within, through the most fluent realization of the metaphor of organic growth. (Samarotto) The paper considers an unusual serial design and its relation to Bartók’s manuscript revisions in “Divided Arpeggios” from Mikrokosmos vol. 6. In particular, we explore how Bartók’s transposition of a seven-measure passage in his working copy of the final draft—turning what was, in the earlier drafts, a harmonically closed B section into a harmonically open section—interacts with the work’s cyclical/serial design, engendering transformational isomorphisms with certain local and large-scale contrapuntal and harmonic structures in the work. (Gollin) “My Time of Day” is Sky Masterson’s confession: it is where he sheds his cool exterior and comes to terms with the fact that he has fallen in love with a missionary, a woman he only courted in order to win a bet. Each tonal region corresponds to a different phase in Sky’s dramatic personal transformation. The various modulations and tonicizations all accompany motivic or thematic changes, thereby projecting a series of relatively disjointed narrative events. Because this song is short, episodic, and fairly terse, in my talk I will spin out a fairly detailed analytical narrative, discussing tonal regions, counterpoint, and their textual correspondences. (Buchler) My paper demonstrates how the concept of step class enables a “parallel universe” of step-class operations suited to describe motivic transformations in modal, tonal, and post-tonal music. The enormous flexibility of the step-class approach stems from the fact that step classes can be mapped onto a variety of referential collections (e.g., the diatonic or octatonic). (Heinzelmann) Our co-authored paper examines Babbitt’s None but the Lonely Flute for Flute for unaccompanied flute (1991) from the points of view of flutist and theorist. We focus on the virtuosity—compositional and performative, apparent and hidden—that permeates the work. (Leong)


4. Describe your methodology. Example 1 illustrates the I cc relation between the two statements. However, whereas inversion-about-C underscores a formal relationship in the large, it says little about the content and function of the inverted passages it relates. More fundamental to the work’s structure, I argue, is its organization around what I have called maximally-distributed multi-aggregate (MDMA) cycles. (Gollin) The sketch appended to this proposal reflects one facet of my analytical methodology, and I will briefly explain some of the non-standard notation and their narrative implications. (Buchler) I will introduce eight types of step-class operations grouped into four categories (see example 1b). The first category includes motivic transformations within a single modular space… The second category discusses motivic transformation across different modular spaces (referential collections of different cardinality)…. The third category concerns inversions within and across modular spaces…. Finally, I briefly discuss internal motivic transformations; that is, transformations not brought about by a change in the referential pitch-class environment. (Heinzelmann) 5. Demonstrate specific results. We can see that there are clear similarities in the voice leading between trichords p trichords  p and  and q in Example 4 and the voice leading between trichords x  trichords  x  and  and z  z in in Example 2. However, while the voices lead off from the same pitch-class set in both examples ( x  ( x  and p  and p), ), they lead destination trichords (words, z  and  and qthe ) that exhibit pairs different pitch-class content and classtomembership. In other (z  trichordal in these two examples fromsetBerg’s op. 5, no. 1 exhibit consistency in voice leading, but not in harmonic motion. (Pau)  A related fluidity pervades pervade s the form. The opening ope ning theme of the intermezzo intermez zo recurs as an ever expanding antecedent but is not tonally closed until the end of the movement. Example 5, an overview of the whole movement’s voice-leading structure, shows that the bass motion of the first five bars, Ab–F–C–Eb, is expanded throughout the A section. (Samarotto) Example 4a illustrates how pcs of the (3,5,3,3)-cycle are distributed pair-wise, with either 10 or 14 steps between like pairs (with an ordered pair-wise pc grouping, an 11/13 distribution is not possible). The exposition unfolds the complete even form (unfolding clockwise on Ex. 3), while the reprise unfolds the complete odd form (unfolding counterclockwise on Ex. 3). The presentation of both both forms  forms of the (3,5,3,3)-cycle in the exposition and reprise both distinguishes and binds the two sections. (Gollin) ^ However, the resurgence of 3 at m. 19 signifies a transformation of the initial melodic tone, now re-cast in the new key (G major). It more clearly represents a continuation of that initial A than either the salient A in m. 12 or the Ab in m. 16. These measures (12, 16, and 19) each function as points of dramatic and musical transformation as Sky Masterson gradually becomes the person that the missionary Sarah Brown wants him to be. (Buchler) Chopin’s Second Ballade opens with the pastoral theme shown in Example 1, representing a desirable order that closes positively in the putative home key, F major. The second theme, also shown in Example 1, crashes upon the idyllic scene, beginning in A minor and announcing a storm or battle topic. Our sympathies lie with the opening theme, suggesting that a desirable close to this narrative will find the storm subsided and the pastoral theme reasserted in the home key. But, as Example 2 shows, when the th pastoral theme hasprolongs difficultyan maintaining that musical topic, this time concluding with reappears, a passage it that anxious and striving diminished-7 , leading to a blaring announcement in G minor before a move to the dominant of D minor. (Klein)


The notated meter plays an ambiguous role, fluctuating dramatically in its distance from both time-point structure and musical surface. Although this distance distance prompts some critics to question the perceptual relevance of precise time points, duration, and even tempi, it is not an isomorphism of surface, meter, and time-point array that demonstrates both Babbitt’s and the performer’s virtuosity, but rather interplay among all three levels— now distant, now coinciding. Babbitt’s skillful manipulation of these distances can be seen in mm. 98-108, the “climax” of Lonely Flute. Flute. (See Example 4 and corresponding array aggregates in Example 5.) (Leong) 6. Conclusion (“I will show…”) In each instance, the composer appears to have been focused primarily on voice-leading gestures. As a result, the harmonic activity in the music is determined in large part by the voice leading, not the other way round. (Pau) This paper will show that this movement is composed as a series of ever-expanding phrases that grow organically out of the opening five bars, subsume parenthetical diversions (including a whole trio) in their wake, and completely overwhelm any sense of the traditional formal divisions. (Samarotto) The talk will explore the analytical consequences of other MS revisions, including Bartók’s altered transition to the reprise and his alterations to the lead-ins of each section—changes that have implications for the work’s motivic coherence and largescale tonal design. Bartók’s revisions offer a rare and fascinating view into his compositional processes, a chance to compare the paths not taken with those he chose. (Gollin) Culturally, the ballade as ironic narrative replays a theme common to Chopin’s music, which often questions an idealized pastoral. If, however, we hear the pastoral theme as a singular voice, then the reversal of fortune in the ballade is tragic—the defeat belongs not with tonality or pastoral as ideal types but with this particular use of tonality and this particular token of pastoral. (Klein) In Babbitt’s Lonely Flute, Flute, then, the virtuosity of both composer and performer plays hide and seek. At times flamboyantly displayed, at others deeply hidden, virtuosity is at all times a sine qua non  non of the work. (Leong)


Some co conc nclluding tho thou ughts  A. Matters of presentation present ation 1. Avoid footnotes (but include short bibliography) 2. Use nice graphics 3. Avoid errors of spelling, grammar, or fact B. Matters of style and tone 1. Think about your audience 2. Establish authority in your area, but be generous to the nonspecialists C. Work collaboratively


R iffing i ffing on Buxtehude Hierarchical Memory and the Analysis and Pedagogy of Keyboard Improvisation Proposal For all the ink dedicated to rhetoric in Baroque music, not enough of it has acknowledged acknowledge d the importance of memoria , the skill that equipped the composerimproviser-keyboardists improviser-keyb oardists of the Baroque to extemporize the pieces that we know today. Figure 1 presents a three-tiered hierarchical model that places memoria  as  as the linchpin between improvisational learning (i.e., memorial input) and improvised performance (i.e., memorial output). output). Improvisers learn patterns patterns on three interrelated interrelated levels---long-range levels---long-range trajectories (dispositio) , local generating principles principles and skeletal frameworks (elaboratio) , and diminution strategies to apply to these frameworks (decoratio) ---and ---and they rely upon these three phases during extemporaneous playing. By applying this model analytically to pieces such as the Buxtehude Variation Suites, BuxWV 226, 228, 230, and 231, we can view each written-out improvisation as one of countless possible interactions among dispositio , elaboratio , and decoratio . The first reprises of the four Allemandes all reach the same series of basic waypoints (dispositio  (dispositio , Fig. 2), but each does so via its own set of generating formulas (elaboratio  (elaboratio ) and motivic diminutions (decoratio  (decoratio ). ). Figure 3 contrasts contrasts the elaboratio  frameworks  frameworks of these reprises. I explore the precise nature of the similarities and differences among these four movements,  which lie sometimes sometimes on the surface and and sometimes beneath beneath it, and I utilize utilize the model in Fig. 1 in order to comment upon the improvisationa improvisationall meanings of variation for pieces such as these. This model is pedagogical as well as analytic; I report on a curriculum for teaching the improvisation of Binary-form Binary-form suite movements. Through repertoire study, study, students


deduce a generic dispositio  for  for a Minuet (Fig. 4), which determines a basic layout of phrases, cadences, cadences, modulations, and sequences. sequences. They also practice, transpose, transpose, and memorize characteristic elaboratio  frameworks  frameworks (Fig. 5) and diminution strategies, strategies, all of  which are adapted adapted from contemporaneous contemporaneous treatises by Wiedeburg, Wiedeburg, Niedt, and and others. Prior to improvising, students elaborate this dispositio  with  with a piece-specific arrangement arrangement of particular keys, modulatory modulatory paths, and sequence types (Fig. (Fig. 6). Within this template, template, they extemporize a series of learned elaboratio  formulas  formulas that realize the chosen path, and render these as a musical surface by applying melodic and rhythmic diminution (i.e., decoratio ) to them; a sample improvised Minuet Minuet (Fig. 7) realizes the dispositio  of  of Fig. 6.  And indeed, analysis analysis and pedagogy pedagogy fruitfully fruitfully collide when we we riff on Buxtehude, Buxtehude, rendering the elaboratio  skeleton  skeleton of BuxWV 231 with different surface motives (Fig. 8), or preserving the surface motives of BuxWV 228 while employing different voice-leading progressionss to realize the underlying dispositio  (Fig. progression  (Fig. 9). Such an improvisational improvisational dialogue dialogue is simultaneously analytical and creative, and its flexibility derives from regarding improvisational improvisation al memory as hierarchical generation, generation, rather rather than serial serial regurgitation. regurgitation. To conceive of improvisational learning in this way is to view written-out improvisations such as Buxtehude’s, quite rewardingly, rewardingly, as realizations of an infinitely variable set of generative options, and also to offer an effective and creatively structured method for the present-day teaching and learning learning of stylistic improvisation. improvisation. In this way, the improvisation of Baroque Baroque keyboard music resides in a place where analysis and musica pratica  happily  happily intersect.


R iffing i ffing on Buxtehude Hierarchical Memory and the Analysis and Pedagogy of Keyboard Improvisation Required Equipment

Piano LCD projector with Mac laptop connection 1/8-inch audio input (from laptop)


S elected Bibliography

[pseudo-Cicero]. 1954.  Ad C. Herennium; Herennium; de ratione dicendi dicendi (Rhetorica ad ad Herennium) . trans. Harry Harry Caplan. Caplan. Cambridge, MA: Harvard University University Press. Press. Dreyfus, Laurence. 1996. Bach and the Patterns of Invention . Cambridge, MA: Harvard University Press. Larson, Steve. 2005. “Composition versus Improvisation Improvisation?” ?”  Journal of Music Music Theory   49/2 (Fall 2005), 241-273. Niedt, Friedrich Friedrich Erhardt. 1700, 1721, 1717. Die musikalische Handleitung . Hamburg: Schiller. Pressing, Jeff. 2000 (1988). “Improvisation “Improvisation:: Methods and Models.” In Generative Processes in Music , ed. John John Sloboda, Sloboda, 129-178. New York: Oxford University University Press. Press. ---------------. 1998. “Psychological Constraints on Improvisational Improvisational Expertise Expertise and and Communication.” Communicatio n.” In In the Course of Performance , ed. Bruno Bruno Nettl, 47-67. Chicago: University of Chicago Press. Schulenberg, David. 1995. “Composition and Improvisation Schulenberg, Improvisation in the the School of J. S. Bach.” Bach Perspectives 1, ed. Russell Russell Stinson. Stinson. Lincoln: University of Nebraska Nebraska Press. Spiridione a Monte Monte Carmelo (Johann Nenning). Nenning). 1670-1675. Nova Instructio pro  pulsandiss organis.   pulsandi organis.  Bamberg. Sudnow, David. 2001 (1993, 1978). Ways of the Hand: A Rewritten Account . Cambridge, MA: MA: MIT Press.  Wiedeburg, Michael. Michael. 1765, 1767, 1775. Der sich selbst informirende Clavierspieler .






  s   e   s    i   r   p   e    R    t   s    i    F   r   r   u   o    F    f   o   s   n   o    i    t   c   u    d   e    R   o    i    t   a   r   o    b   a    l   :    E    6    2    2 3 e    V u    W   x g   u F   B

  :    8    2    2    V    W   x   u    B

 .   n   o h    i o    t   a   s    i   v n a   o a s   r y   p o   m o    I m p    d e m   r   a I   o M d    b   y   e ch b    K   e c   u a K   q   o   r     a e i o    B    f H   o    l o   e    d   o h d    M e P    l   a   c    i   r   o n    t B a   e s    h    R o n




1 e u g F

  :    0    3    2    V    W   x   u    B

  :    1    3    2    V    W   x   u    B  

 ,    6    2    2    V   c    i   n    W   o   x   u    T    B   n    (    i   s   e   e   c    d   n   n   e   a    d   a   m   e    C    l   e    t    A   a  ,    i   e    d    d   e   u    h   c   m   r    V   s    i   e   e    f   e    t    t   n   s   x    i   n   V  o   o   u   r    I    T   p   n    B   o   i   e    f    d   o    t    f   r   n   o   a   y   t   o   t   a   s   n   g   r   o   e   m    i    i    V   o    t    f ,    i   r    I    t    i    t    i   a   s    f    f   a   r    )   o   n   g   o   t    1   p   n   n   S   o    3   s   o   o   n   C    i    2    l    i    i   o   l   o    D   d   a   r    t    t   a   n    t   a   i   z   l    P   i   a    l   c   u   n 2  ,   a   i    0    i    d   e e    t    i   n   M   o   o   d   a   n   T    C    3    I  , u   2    ) g   8    )    )    )    2    (    B    (    C    (    D    ( F   2      A


  :    )   g   n    i    k   e   e   s   y   e    k    (   s   n   o    i    t   a    l    d   u   o    M   C

 .    D   n    i    t   e   u   n    i    M    d   e   s    i   v   o   r   p   m    I   n   a   r   o    f   o    i    t    i   s   o   p   s    i    D    d   e    l    i   a    t   e    D

  :   s   e   c   n   e   u   q   e    S  


6 e u g F  


   t   e   u   n    i    M    d   e   s    i   v   o   r   p   m    I   n   a   r   o    f   o    i    t    i   s   o   p   s    i    D   c    i   r   e   n   e    G

   )   e   z    i   r   o   m   e   m    d   n   a   e   s   o   p   s   n   a   r    t   o    t    (   s   n   r   e    t    t   a    P   o    i    t   a   r   o    b   a    l    E



e u g

e u g F  



  :    )   g   n    i   n    i    f   e    d    y   e    k    (   s   n   o    i   s   n   a   p   x   e   c    i   n   o    T


  :    )   g   n    i   m   r    i    f   n   o   c    y   e    k    (   s   e   c   n   e    d   a    C  




  o    i    t   a   r   o   c   e    D    t    1   n    3   e    2   r   e    f    f    i    V    D   g   x   u   n   W    i    B   y    l    f   p   o   p   k    A  r   o   n   w   o   e    i    t   a   s   m   a    i   r   v    F   o   r   o   p   i    t   m  a   r    I   o   e    b    l   a   p   l    E   m   a   e    S    h    t   o 8 e   t   s   n   r   e u   t g   t   a F   P     o    i    t    i   s   o   p   s    i    D   e    h    t   n   o   p   u    d   e   s   a    B    t   e   u   n    i    M    d   e   s    i   v   o   r   p   m    I   e    l   p   m   a    S 7

   6   g  .    i    F   n    F   i e u g

  r   o   o    i    b    t    i    h   s   g    i   o   e   p   s    N    i    r    D   e   s   w    ’   e   o    d   u   L   e    h    h   e    t    t   x   a   u   i    B   g   v   e   r   n   d    i   e   z    i    d    l   n   a   e   e   R    R   t   n   u   8   o   b    i    t  ,    2    2   a   o   s    i    i    t    V   v   a   r   o   r   o   W   x   p   b   u   a   m   l    B    I    f   e   E    l   p   w   e   o   s   e   m    N   r   a   u   a   i    S   f   g   o   F 9 e   a   s   n   n   r   u   e   T u   M    d g   y   n F   b   a




The “Continuous Exposition” and the Concept of Subordinate Theme Proposal The remarkable flourishing of research into the theory of musical form witnessed in the last several decades has resulted in the propagation of many new ideas and their attendant terminology. This paper examines examines one key concept concept of Hepokoski and Darcy’s recent “Sonata Theory”—their fundamental distinction between sonata expositions that are either two-part or continuous. Considering this distinction is useful not only to probe its general efficacy for formal analysis, but also because it permits us to evaluate a number of other key notions associated with Sonata Theory, especially the medial caesura  and secondary-theme zone (S). For Hepokoski and Darcy ground the distinction distinction between exposition types largely in terms of these two concepts: a two-part exposition contains  both a medial caesura and an S-zone, whereas a continuous continuous exposition contains neither. I contend that this binary opposition misconstrues the commonality of formal procedures operative in classical sonata form and, following foll owing Caplin’s “form-functional” “form-functional” approach, insist that all expositions contain a subordinate theme (or, at least, sufficient functional elements of such a theme), even if the boundary between the transition and subordinate theme is obscured, a situation that can give rise to “continuous” expositions according to Sonata Theory. To frame my argument, I propose three categories of such a blurred blurred boundary. In the first, first, the transition lacks a functional ending, but the subordinate theme still brings an initiating function of some kind (e.g., Haydn’s “Farewell” Symphony). In the second category, the transition ends normally,  but the subordinate theme lacks a clear beginning. beginning. Two subcategories involve cases where (a) the subordinate theme introduces a new standing on the dominant , , one that


prolongs the same harmony found at the end of the transition (Mozart’s “Hunt” Quartet, Example 1), or (b) the end of the transition is reinterpreted as an internal half cadence of a subordinate theme, which is then followed by a new continuation or

cadential function leading to a PAC in the new key (Haydn’s “Joke” Quartet, Example 2). In the third category, both the transition lacks an end and the the subordinate theme lacks a beginning, thus effecting a complete fusion of these thematic functions (Haydn’s Quartet Op. 33/1). I conclude by examining some of the key conceptual differences that that account for the divergent views of expositional structures offered by Sonata Theory and Caplin’s theory of formal functions. In particular I assert that whereas the medial medial caesura is an effective rhetorical device, it has no essential form-functional consequences: consequences: it is neither responsible for ending the transition nor is it a necessary condition for the existence of a subordinate theme. Likewise, the distinction between between two-part and continuous continuous expositions, while useful as an informal description of textural and rhythmical processes, obscures the unity of formal syntax of instrumental instrumental music in the high high classical style. Rather than focusing on rhythmic and textural devices to define expositional structure, I advocate instead an analytical methodology that attends to the form-functional expression of individual phrases making up thematic units within a sonata exposition.

The “Continuous Exposition” and the Concept of Subordinate Theme



Selected Bibliography Caplin, William. Classical Form (Oxford, 1998). Caplin, William, James Hepokoski, and James Webster. Form, Forms, and Formenlehre (Leuven, 2009). Darcy, Warren, and James Hepokoski. “The Medial Caesura Caesura and Its Role in the the Eighteenth-Century Eighteenth-Centu ry Sonata Exposition, Music Theory Theory Spectrum , 1997.

Hepokoski, James, and Warren Darcy. Elements of Sonata Theory (Oxford, 2006). Larsen, Jens Peter, “Sonaten-Form Probleme,” Blume Festschrift (Bärenreiter, 1963). Suurpää, Lauri. “Continuous Exposition and and Tonal Structure in Three Late Haydn Works,” Music Theory Theory Spectrum , 1999. Example 1: Mozart, String Quartet in B-flat (“Hunt”), K. 458, i, 41–79

The “Continuous Exposition” and the Concept of Subordinate Theme



Example 1, cont.

The “Continuous Exposition” and the Concept of Subordinate Theme



Example 2: Haydn, String Quartet in E-flat (“The Joke”), Op. 33/2, i, 13–29

The “Continuous Exposition” and the Concept of Subordinate Theme



Example 2, cont.

The “Continuous Exposition” and the Concept of Subordinate Theme



Drawing on recent studies of musical madness, this paper proposes an historically 1

grounded model of the musical representation of obsession.  Formed in the late eighteenth century and popularized by the development of psychiatry in the nineteenth, medical theories of obsession divide the mind into two conflicting agents: a rational, mobile agent, and a stubborn, 2

fixed agent.  Contemporaneous with the emergence of this medical model of mental pathology, an evocative musical topic—in which a note or group of notes is stuck, repeating itself within a shifting harmonic context—has been used by composers to depict these obsessional spaces in  purely musical terms, signifying through metaphoric transfer: the images of obsession (the “mobile idea vs. the fixed idea”) are assigned musical equivalents (the “mobile harmony vs. the 3

fixed note”).  The topic will be introduced via a brief survey through some notable texted examples (Schubert’s “Die liebe Farbe,” Wolf’s “Im Frühling,” Vaughan Williams’s “In Dreams”). The conflict between the mobile and fixed agents of obsession creates stories that are familiar from other expressive trajectories used to narrate disability (Straus 2006). Three model analyses will demonstrate the most common narratives: the obsessive agent may be rehabilitated (Brunetti’s programmatic symphony Il maniático), the obsessive agent may prompt a descent


 Recent studies of musical representations of obsession include Brittan 2006, Burstein 2006, and Rodgers 2006. Goldenberg 2006, a study of “musical obstinacy,” is also relevant. 2  For a recent study of the cultural history of obsession, see Davis 2008. Other medical-historical studies include Berrios 1985 and Ingram 1991. 3  On the relevant theories of gesture and agency, see Hatten 2004. Monelle 2006 explores at length the relationship between topics and the cultures that produce them. For example, Andrew Harper, an eighteenth-century doctor, evocatively describes the obsessive mind as “ pitched upon

a specific note and its nervous motions circumscribed within the limits of a certain modulation” (Harper 1789).


“Obsession” / 2

into total madness (Britten’s Rejoice in the Lamb, mvt. 5), or the obsessive agent may be accommodated by the rational agent (Peter Cornelius’s “Ein Ton”). Brunetti’s formally peculiar symphony places the obsessive agent in the cello, who repeats a “mania” motive (Example 1); according to the symphony’s program, his friends (the 4

rest of the orchestra) eventually encourage him to move along from his fixity.  In the example by Britten, a repetitive motive isolated in the organ (Figure 1) instigates a gradual darkening of harmonies, from the all-white-key E minor to all-black-key E-flat minor (Figure 2); by m. 12 the chorus, singing the obsessive motive, emerges as “mad.” Cornelius’s song presents a conflict  between the agents of the voice, who “obsessively” intones the entire text on B, and of the piano accompanist, who proposes possible modulations but must scramble to accommodate the singer when he refuses to budge bu dge (Figure 3). The moment of maximal conflict to the immobility of the singer’s B comes in m. 24—but even there the piano’s B flat (which suggests resolutions that would render B dissonant, Figure 4) does little to nudge the voice from its fixity.


 On minor-to-major “recuperation,” see Grave 2008.


“Obsession” / 3


Example 1: First appearance of the solo cello’s “mania” figure (strings only). Brunetti, Symphony no. 33 ( Il maniático), mvt. I, mm. 20–23.

Figure 1: The “obsessive” motive in  Rejoice in the Lamb, mvt. 5. The motive is replicated at three different pitch levels: D -E-F -G (m. 3), F -G-A -B (m. 6), and A -B-C -D (m. 9).

Figure 2: Motion from E minor to E-flat minor in Britten,  Rejoice in the Lamb, mvt. 5,

mm. 1–12. The “scale” in the lower staff is derived from Figure 1; its whole notes represent the bass note of each chord. (LP = Leittonwechsel + Parallel  transformations)  transformations)


“Obsession” / 4

Figure 3: Voice-leading sketch of Cornelius, “Ein Ton,” mm. 15–29.


“Obsession” / 5

Figure 4: Possible resolutions of the chord in m. 24 (Cornelius, “Ein Ton”). The third option—  Cornelius’s choice—allows the “obsessive” B to remain in place.


“Obsession” / 6


Berrios, German E. 1985. “Obsessional Disorders during the Nineteenth Century: Terminological and Classificatory Issues.” In The Anatomy of Madness: Essays in the  History of Psychiatry, volume 1, People and Ideas, ed. W. F. Bynum, Roy Porter, and Michael Shepherd. [London]: Tavistock. Brittan, Francesca. 2006. “Berlioz and the Pathological Fantastic: Melancholy, Monomania, and Romantic Autobiography.” 19th-Century Music 29: 211–39. Burstein, Poundie. 2006. “ Les chansons des fous: On the Edge of Madness with Alkan.” In Sounding Off: Theorizing Disability in Music, ed. Neil Lerner and Joseph N. Straus. New York and London: Routledge. Davis, Lennard J. 2008. Obsession: A History. Chicago and London: University of Chicago Press. Goldenberg, Yosef. 2006. “A Musical Gesture of Growing Obstinacy.” Music Theory Online 12.2. Grave, Floyd. 2008. “Recuperation, Transformation and the Transcendence of Major over Minor in the Finale of Haydn’s String Quartet Op. 76 No. 1.” Eighteenth-Century Music 5: 27–50. Gut, Serge. 1990. “Le phénomène répétitif chez Maurice Ravel: De l’obsession à l’annihilation incantatoire.” International Review of the Aesthetics and Sociology of Music 21: 29–46. Harper, Andrew. 1789. Treatise on the Real Cause and Cure of Insanity. London: C. Stalker. Hatten, Robert S. 2004. Interpreting Musical Gestures, Topics, and Tropes: Mozart, Mozar t, Beethoven, Schubert . Bloomington and Indianapolis: Indiana University Press. Ingram, Allan. 1991. The Madhouse of Language: Writing and Reading Madness in the  Eighteenth Century. London: Routledge. Monelle, Raymond. 2006. The Musical Topic: Hunt, Military and Pastoral . Bloomington and Indianapolis: Indiana University Press. Rodgers, Stephen. 2006. “Mental Illness and Musical Metaphor in the First Movement of Hector Berlioz’s Symphonie fantastique.” In Sounding Off: Theorizing Disability in Music, ed. Neil Lerner and Joseph N. Straus. New York and London: Routledge. Straus, Joseph N. 2006. “Normalizing the Abnormal: Disability in Music and Music Theory.”  Journal of the American Musicological Society 59: 113–84.


PAPER PROPOSAL: “Isomorphic Mapping, Self-Similarity, and ‘Nesting’ in Charles Wuorinen’s Cello Variations” th

American twelve-tone composer Charles Wuorinen recently celebrated the 30   anniversary of his landmark twentieth-century composition manual, Simple Composition, and its historical significance continues to grow.1 Not only does Wuorinen s text coalesce ’

important twelve-tone developments from giants Schoenberg, Stravinsky, and Babbitt, “

 but it introduces his evolutionary nesting method,  which transfers the implications of an ordered series to the background structure of a piece. Though the book originally addressed composers, its impact resonates through numerous spheres today, including: composers, theorists, teachers, students, or anyone tracing the lineage of twentiethcentury twelve-tone serialism.

Though Simple Composition  s approach is abstract, most specific twelve-tone ’  

 practices it explicates – pre-existing concepts such as basic operations, multiplicative transformation, rotation, derivation, etc. – have all been identified and analyzed in ’

musical works. Andrew Mead s analyses of Milton Babbitt’s music and Joseph N. ’

Straus s work on Stravinsky s late music have facilitated the dissemination of these 2

important compositional contributions to the method.  However, the crux of Wuorinen s “

text, his own nesting method,  has been difficult for theorists to instantiate concretely into actual pieces of music. This presentation will propose the first-ever comprehensive “

analysis of the nesting method,  illustrating that Wuorinen s basic set – a hexachord 1

 Charles Wuorinen, Simple Composition (New York: C.F. Peters Corporation, 1979).  For representative analyses see Andrew Mead, “About  About Time’s Time: A Survey of Milton Babbitt’s Recent Rhythmic Practices,”  Perspectives of New Music 25 1/2 (1987); 2

and Joseph N. Straus, Stravinsky's Late Music (Cambridge Studies in Music Theory and  Analysis) (New York: Cambridge, 2004).


consisting of the pitches F, D, E, F#, B, and G – efficiently organizes pitched (introduced  by Schoenberg), rhythmic (introduced by Babbitt) and formal (introduced by Wuorinen) elements of Cello Variations (see Fig. 1). I will present examples of the isomorphic fabric conjoining pitch, local temporal, and global temporal dimensions, as well as construct a comprehensive breakdown of the “nesting method” in this work (see Table 1). Like a set of Russian dolls, the nested form unpacks self-similar versions of itself to communicate uniform musical relationships. By diagramming the intricate framework of Wuorinen’s Cello Variations, I aim to not only further advance the dissemination of Wuorinen’s stylistic principles contained within his music and text, but also illuminate yet another creative tributary in the American twelve-tone tradition. This presentation hopes the many spheres of interest attached to Simple Composition may use the models in Cello Variations as an integrative demonstration of multiple twentieth-century twelve-tone techniques.


Selected Bibliography

              Karchin, Louis. "Charles Wuorinen’s Reliquary for Igor Stravinsky." Contemporary

Music Review 20.4 (2001): 9-27. Karchin, Louis. "Pitch Centricity as an Organizing Principle in Speculum Speculi of Charles Wuorinen." Theory and Practice 14/15 (1989-90): 5-82. Kresky, Jeffrey. "The Recent Music of Wuorinen." Perspectives of New Music  25 1/2 (1987): 410-17.

Mead, Andrew. "About About Time’s Time: A Survey of Milton Babbitt’s Recent Rece nt Rhythmic Practices." Perspectives of New Music  25, 1/2 (1987): 182-253.

                       Straus, Joseph N. Stravinsky's Late Music (Cambridge Studies in Music Theory and

 Analysis). New York: Cambridge, 2004. Stravinsky, Igor. The Poetics of Music in the Form of Six Lessons . Cambridge: Harvard, 1970. Wuorinen, Charles. Simple Composition. New York: C.F. Peters, 1979.


   2   ♪   x   4    2   =  

  x   5   ♪    4    8  .   =

   2   ♪   x   8    4

   ♪    0    6    3    6   =   n   6   o   3    i    t   x   c   e   0    S   1

   ♪    8    8    2    5   =   n   o   6    i    3    t   c   x   e    S   8

   ♪    0    8    1    4   =   n    6   o    i    3    t   c   x   e    S   5

   ♪    2    7    3   =   n   o   6    i    3    t   c


  e   2    S

   )    t    i   s   n   n   o   u    i   g    t   c   n    i   e   s   l   a   c   e   s   g    (   r   a    l    ♪    6    6    3   :    1   =    N   6    3    O    I    /    S   ♪    V   2    6    9    I  ,    D   1

   ♪    2    7    2   =   n   o   6    i    t    3   c   x   e    S   2

   ♪    4    2    3    1   =   n   o   6    i    t   c   3   e   x    S   9

  =    2   ♪    4   x   1    7   =

  s   n   o    i   s    i   v    i    d    ”    I    2   ♪    “   x   0    h    t    2    i    )    t    0    i    1   =   w  n   u   —   g   s   n    2   n    i   o    l    ♪    i   a    t   x   0   c   c   s    0   2   e    (   s    1   =    b   u   ♪    2    2   s   =    6   n    3    ♪   o   /    2    i    6   x    t   c    ♪    3   =   e    7    S   2

  s   n   o    i   s    i   v    i    d    ”    S    “    h    t    i   w   —   s   n   o    i    t   c   e   s   )    t    b    i   u   s   n    1   u   g   n   n    i   o   l    i   a    t   c   c   s   e   (    S   :    ♪    9    2   =    N   6    O    I    3    S   /    V   4    ♪    I    D   2    3

   ♪    5  .   x   5   2    5  .   =    )    t    i   n    2   u   g   n   n    i   o    l    i    t   a   c   c   e   s    (   s    b   u   ♪    5  .    S  ,   =    1   n   /   o    6    3    i    t   c   e   ♪    S   8    1  

   9   ♪   x   0    0   9    1   =

   9   ♪    8   x   1    2   =    9   ♪   x   8    1    2   =    9    ♪   x   1    8    9   =

  x   5   ♪    1    2  .   =   x   5   ♪    1    2  .   =    ♪  .   x    5    4    9   5  .   =    ♪    5  .   x   5    2    2    0  .    2    1   2   =    ♪    8   x   5    2    1  .    8   2   =

   9   ♪    2   x   7    8   =      9   ♪    5   x   4    5   =

  x    )    5  .    ♪    7    5    (    7   6  .    0   6   3    1  .   =

  x    ♪    5    0   5    1  .   =

   1   n   o    i    t   c   e    t   s   )    i    b   u   n   u    S   g  ,      1   i   n    l   n   o   a   c    i   s    t    (   c   e   ♪    S   :    5    2  .    3    2    N  =    O    I    6    S   3    V   ♪    /    I    D   1    8

   ♪    5    2  .    1   x   5    2    1  .    5   2   =    ♪    5    5  .   x   2    4  .    2   2   =    ♪    5    5  .   x   2    4  .    2   2   =    ♪    5    5    0  .   x   2    2  .    2    9   2   =

   )    9      8    )   s    t    i   e   r   n   u   u   s   a   g   e   i   n    l   m    (   a   c    6   (   s    ”   s    ♪   r   e    7    t   e   6  .   m  =    h    t  .    i    5    1   w   3   s   e    /    d   r   e   u   s   s   u   a   e   ♪   m   1    “    2

   ♪    3  .   x   7   3    8    5    6  .   =    ♪    3    3  .   x   7    3    5   6  .   =    ♪    3    3  .   x   7    1    6    2  .   =    ♪    3    3  .   x   7    1    6    2  .   =    ♪   x   7    6    6    9  .   =   x    )    3    (    ♪    2  .    0   4  .    1    1   =

   )    ♪    5    2   x   e  .   r    4    3    8  .   u   =   s     a   e   m    (    4   x    ♪    ”   s    5   4  .    2   r   =   e    t    )   e   t   m   i   n   u    h    t    ♪    i   g    8   x   n  .   w   i    4    l    2  .   =   s   a   e   c   r   s   u    (   s   a   e   ♪  .   x    ♪   m   4    “   =   :    0    2   4  .  .    8    4   =    3    N   /    O    I    d   x   s    )    S   e    V   ♪   u    (    0    4    1    ♪    I    D   2    1    9   4  .   =

                                                                                                                                                                                       


                                                                                                                 

                                                                                              

                                                                                                                        


                                   

                                 

   


Improvising with “Perle Knets”

Recent connections between the compositional materials of George Perle and theoretical/analytical approaches from David Lewin and Henry Klumpenhouwer (labeled “PK”) have shown promise (Perle (Perle 1993, Lewin 2002). 2002). However, concerns about relational “promiscuity,” recursion, and perceptibility (Buchler 2007) suggest that a more  practical orientation is needed. This paper proposes to explore PK materials through keyboard improvisation, 1) to give a practical method for hearing their relationships; 2) to show the interdependence of harmony and voice leading; and 3) to suggest the many  paths through pieces that PK materials offer analysts, following the argument for multivalence given in Klumpenhouwer 2007. The bases of PK are the twelve inversional sums and intervallic differences, shown as contrary-motion sum wedges and parallel-motion difference interval parallels  (Ex. 1). In the simplest case, note pairs from a single single wedge or parallel form the structure, as has been shown in many analyses. Improvisation with PK materials begins with these shapes, and recognition of aspects such as the differences between the even and odd sums. Knets emerge when two wedges or one parallel and one wedge combine. The trichord A-F#-B in Schoenberg’s Opus 19/6 (Ex. 2a, arrow) derives (a) from aligned sum 3,5 wedges, with axes offset by one; the registral setting results from flipping one “arm,” then reducing out the doubled voice (G#-G-F#, etc.). Example 2b shows a wedging formation from the chord A-F#-B itself, in strongly isographic knets, and a melodic Perle cyclic set representation, all for practice practice and context. Example 2c shows an improvisatory path through the piece, exploiting the T2-based positively isographic knets in six marked event areas. The voice leading shows how modulation between


wedges occurs by moving the voices unevenly, allowing for the changes from odd to even sums that mark the form. The change from sums 3,5 (C-F-Bb) to sums 5,7 (C-F-G) (C-F-G) (Example 2d) adds another sum 5 wedge; the distance of 3 from Bb to G comes from the alignment. This voice-leading pattern occurs throughout the piece and reflects the G-EG-EC# bass notes; Example 2e can form the basis of an improvisation bridging mm. 6-7.  

Improvisation with wedges and parallels allows us to understand PK materials as

a process, encompassing Lewinian “imbalance” and Perle’s symmetrical completion. Schoenberg’s Opus 19, no. 1 (recast in Ex. 3) opens with improvisational wedges (lower staff) from tetrachordal pairs (sums 9,3) and then trichordal pairs (sums 0,7); these reveal the underlying structure in the harmony and voice leading: how A-C-G-G# gets to D#-BE-F# in the next bar, for instance. Example 4 shows the composing out  of  of positive isography in Stravinsky’s Pieces for Quartet, mvt. 3. Example 5 shows the opening of of Perle’s aptly-named “Improvisation,” in the more complex interwoven cycles that characterize the two lines of his arrays; discussion will clarify how recursion is solved in Perle’s music by these arrays. arrays. The paper will continue with interwoven cycles through hexachordal knets from Berg and Messiaen, and will conclude with some comments on the Whincop observation that Knets reduce to two Lnets with one I-relationship. I-relationship. The latter may be interpreted as piling on additional parallels to an internal wedge. Throughout, the practical orientation or ientation will attempt bridge the gap between current cu rrent “gutlevel” understanding of PK materials and their analytical use.







References Networks.” Music Theory Michael Buchler, “Reconsidering “Reconsidering Klumpenhouwer Networks.” Online 13.2 (2007). Henry Klumpenhouwer, “Reconsidering Klumpenhouwer Networks: a Response.” Music Theory Online 13.3 (2007). Michael Callahan. “Mapping “Mapping Sum-and-Difference Space: Parallels Between Perle and Lewin.” Theory & Practice vol. 33 (2008): 181-217. 181-217. Efficacy of K-Nets in Perlean Theory.”  Music Theory Gretchen Foley, “The Efficacy Theory

Online 13/3 (Sept. 2007). David Lewin. “Thoughts on Klumepnhouwer Networks and Perle-Lansky Cycles” Music Theory Spectrum, vol. 24/2 (2002): 196-230. George Perle. Music Theory Spectrum Oct 1993, Vol. 15, No. 2: 300–303. Dave Headlam. Introduction to the Music of George Perle. Theory & Practice vol. 33 (2008): 1-45. 1-45.   



 Neo-Riemannian and other theorists have produced numerous graphs representing represen ting voiceleading relationships (Cohn 1996 and 1997, Douthett and Steinbach 1998, Tymocz k o 2004, Rock well well 2009). Often, these graphs seem to suggest something lik e the following methodology. First, one selects some interesting domain of chords and some interesting set of voice-leading relationships among them. (For example, “parsimonious” voice leading among major and minor triads.) Second, one constructs a graph representing all of the relevant voiceleading relationships among the objects in question. Third, one interprets the resulting graph as  providing a measure of distance between its chords. Thus, for example, one might use it to analyze music that moves between non-adjacent chords, or claim that larger leaps on the graph are musically disfavored in some way. However, this third step involves a subtle logical leap. For though the adjacencies on these graphs are well-defined, it does not follow that larger distances equally meaningful. Consider, for example, the familiar Tonnetz (Figure 1). Two chords are adjacent on the the Tonnetz if they can be link ed ed by “parsimonious” voice leading (voice leading in which just a single voice moves, and it moves by just one or two semitones). However, there is no similarly intuitive way to characterize larger distances in in the space. On the Tonnetz, C major is two units away from F major but three units from F minor—even though it ta k es es just two semitones of total motion to move from C major to F minor, and three to move from from C major to F major (Figure 2). It follows that Tonnetz-distances do not correspond correspond to voice-leading distances. Indeed, it is an open question whether any intuitive notion of musical distance is being modeled here. A number of discrete music-theoretical graphs give rise to similar problems, even while faithfully representing local voice-leading moves (cf. Figures 3 and 4, as well as the graphs in Rock well well 2009). The underlying issue is that a discrete graph does not tell us how the voiceleadings it represents compare to the totality of voice-leading possibilities between its chords. To explore this, it is useful to embed these discrete graphs within the continuous geometrical


Graphical Methods in Recent Music Theory, page 2

spaces representing all  the  the voice leadings among all n-note chords (Tymoczk o 2006). This embedding allows us to identify criteria ensuring that all graphical distances faithfully represent voice-leading distances (Figure 5). Furthermore, the geometrical perspective can give us a deeper understanding of these “faithful” voice-leading graphs. To illustrate this last point, I’ll show how the geometrical perspective answers three previously unresolved questions about Douthett and Steinbach’s “Cube Dance” (Figure 6): 1. Which paths on the graph repres represent ent distinct distinct voice leadin leadings? gs? 2. How can we character characterize ize the total total collection collection of voice leadings leadings represent represented ed by the graphs? graphs? 3. Wha Whatt is the the meanin meaning g of the the graph’ graph’ss spatial spatial axes? axes? Though I focus on “Cube Dance,” analogous answers can be given for a range of familiar musical constructions—including Douthett and Steinbach’s “Power Towers” and Tymocz k o’s o’s “Scale Lattices.”


Graphical Methods in Recent Music Theory, page 3


Cohn, Richard. 1996. “Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of LateRomantic Triadic Progressions.” Music Analysis 15.1: 9-40.  –––––. 1997. “Neo-Riemannian Operations, Parsimonious Trichords, and their the ir ‘Tonnetz’ Representations,” Journal of Music Theory 41.1: 1-66. Douthett, Jack  and  and Steinbach, Peter. 1998. “Parsimonious Graphs: a Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition.” Journal of Music Theory 42.2: 241-263. Rock well, well, Joti. 2009. “Birdcage Flights: A Perspective on Inter-Cardinality Voice Leading.” Music Theory Online 15.5. Tymoczk o, o, Dmitri. 2004. “Scale Networ k  ks   in Debussy.” Journal of Music Theory  48.2: 215-292.  –––––. 2006. “The Geometry of Musical Chords.” Science 313: 72-74.  –––––. 2008. “Scale Theory, Serial Theory, and Voice Leading.” Le ading.” Music Analysis 27.1: 1-49.






























Figure 1.  The Tonnetz.  Points represent notes, while major and minor chords are represented by triangles.




















 œ œ œ œ œ œ


4 F






1 2







Figure 2.  (a) On the Tonnetz, F major (triangle 3) is closer to C major (triangle 1) than F minor (triangle 4) is. Consequently, the voice-leading (C, E, G)(C, F, A) is represented a two-step motion, while it tak es es at least three steps to represent (C, E, G)(C, F, A). (b) In actual music,

however, F minor frequently appears as a passing chord between F major major and C major. The Tonnetz cannot explain this familiar nineteenth-century chromatic idiom.


Graphical Methods in Recent Music Theory, page 4


Dø7 F Fr

Bø7 Afø7

Af dim7

D7 D Fr

C dim7 Af7


Bf 7





Cø7 Bf Fr Cs7

Gf Fr


A Fr


Cs Fr


Efø7 Fsø7



Fs 7



E dim7

Figure 3.  A graph of single-semitone voice-leading relations among diminished, dominant, halfdiminished and French Sixth chords, analogous to Douthett and Steinbach’s “Power Towers.” ø7 On the graph it ta k es es four steps to get from C7 to A , even though the chords can be connected  by two single-semitone shifts. (a) (b)

  Figure 4.  (a) A graph of single-semitone voice-leading relations among 024, 013, 014, and 025 set classes. This graph is a series of cubes link ed ed by shared vertices, analogous to Douthett and Steinbach’s “Cube Dance.” However, on this structure the chords {C, D, F} and {E, F , A} are twelve edges apart, even though the minimal voice leading between them, (C, D, F) (A, E, F), involves just six semitones of total motion. motion. Once again, a well-defined local structure gives gives rise to global distances that are difficult to interpret musically. (b) This graph forms three discrete

columns when embedded in the three-dimensional space of three-note chords.


Graphical Methods in Recent Music Theory, page 5

1. Every edge edge on the graph should should represent represent voice leading leading in in which a single voice moves by a single scale step or chromatic semitone (a condition violated by the

Tonnetz). 2. For any two two of its its chords, the graph graph should contai contain n all the the “interscalar “interscalar transpositions” (or “strongly crossing-free” voice leadings) between them (Tymoczk o 2008). This implies that the graph cannot consist in multiple disjoint “columns” when represented in the continuous space of all chords, a condition violated by Figure 4(b). 3. The paths paths comprising comprising these these interscal interscalar ar transposit transpositions ions should should not involve involve ascending and descending motion in the same voice (a condition violated by the

Tonnetz and Figure 3). Figure 5. Criteria ensuring that a graph’s global distances faithfully represent voice-leading

distances. If any graph satisfies these criteria, then the distance between any two of its its chords can be identified with the size of the minimal voice leading between them. them. A number of familiar familiar graphs satisfy these criteria—including Douthett and Steinbach’s “Cube Dance” and “Power Towers,” and Tymoczk o’s o’s “Scale Lattices.”


Graphical Methods in Recent Music Theory, page 6



m a  a j    o  or  r   t r  r i  ia    d  a    d s  m i  i n  no    r  o r   t r  ri  i a     d  a ds  s   

m a  a j    o  or  r   t r  r i  ia    d  a    s  d s  m i  i n  no    r  o r   t r  ri  i a     d  a ds  s   

Figure 6. Douthett and Steinbach’s “Cube Dance” ( a) and the lattice at the center of three-note

chord space (b). By embedding “Cube Dance” in this space, we learn that two Cube-Dance  paths represent the same voice leading if they ta k e the same number of clock wise wise or counterclock wise wise steps. We also see that Cube Dance represents all and only the “interscalar transpositions” between its chords. Finally, the embedding shows that the spatial axes correspond to motion in each of the three voices, requiring a global “twist” not found in Douthett and Steinbach’s original structure.



 Alexander Scriabin envisioned Prometheus, op. 60 as a “symphony of sound” counterpointed by a “symphony of light” (Sabaneev 1910). However, the work premiered without the luce  (color  (color organ) as hoped. Since then, the relationship between music and lights has not been well understood. Cook (2000) wrote, “The luce part literally does add little; for while the slower part has no discernible relationship to what is heard, the faster part simply duplicates information that is already present in the music.” This paper reassesses the relationship between lights and music in Prometheus based on the “Parisian score,” a manuscript containing Scriabin’s handwritten annotations for the light part, and a fresh staging of the work informed by the manuscript, produced by this author.  As Example 1 shows, Scriabin correlated twelve colors of an expanded expanded spectrum with the roots of mystic chords transposed along the circle of fifths. The part written for luce, Example 2, has two light “voices.” The faster voice moves with the fundamental bass of the mystic chord, and is a  visual manifestation of the work’s harmonic rhythm. The slower voice moves moves around a whole-tone cycle, dividing the work into seven parts (Example 3). These large-scale l arge-scale sections correspond to seven evolutionary stages described in Blavatsky’s The Secret Doctrine (1888) , , Scriabin’s metaphysical source text (Sabaneev 2000). The slow luce delineates the work’s dramatic plot, providing new insights into the work’s formal ambiguities.  The published luce part is a real-time visual analysis of o f the work occurring on two temporal levels. However, the Parisian manuscript indicates the lights fulfilled additional aesthetic functions. Scriabin’s annotations call for dynamic shading and special effects such as tongues of flame, fireworks, and lighting bolts—effects that were impossible to realize with Scriabin’s available technology, and existed only in his mind. This imaginary aspect of the work brings Prometheus closer to the Mysterium, the unfeasibly grandiose ritual Scriabin was planning at the time of his death. As 1 


Morrison recounts in “Skryabin and the Impossible” (1998), Scriabin hoped the  Mysterium would end the material world and usher in a new spiritual epoch. The Parisian score manuscript of Prometheus ends with Scriabin’s annotations “inferno, the whole world engulfed,” “cataclysm, all in fire.” Robotics and LED technology can bring a performance of Prometheus  closer  closer to Scriabin’s  vision than ever before, allowing the lights to counterpoint the music with unprecedented precision.  Yet, staging Prometheus  also  also generates questions related to the performance of an imaginary work. First, is a real-time representation of the harmonic rhythm and formal trajectory of the work visually interesting? Can analysis be  performance?  performance? Second, because Scriabin designed a lighting display far in advance of his times, the very fact that his annotations are now possible somewhat diminishes the spirit of their imagined impact. Prometheus embeds a peculiarly modernist paradox: it was a vision of the future, so only in the future can an “authentic” performance of the work be realized—a statement perhaps as true today as it was a century ago.



Reli gion, and Philosophy. Two Blavatsky, Helena. 1888. The Secret Doctrine, The Synthesis of Science, Religion,  volumes. London: The Theosophical Publishing Company. Cook, Nicholas. 2000. Analysing Musical Multimedia. Oxford: Oxford University Press.  оспоминания ания   о крябине [Memories of Scriabin]. Moscow: ClassikaSabaneev, Leonid. 2000.  оспомин XXI.  _____. “рометей [Prometheus].” 1910. Muzyka 1/27: 6-10. Morrison, Simon. 1998. “Skryabin and the Impossible.” Journal of the American Musicological Society 51/2: 283-330.

EXAMPLES  Example 1. Reconstructed musical color circle from Scriabin’s “Table of colors” in the “Parisian score” manuscript of Prometheus, op. 60


  s   s   a    b    l   a   t   n   e   m   a    d   n   u    f   e    h   t   n    i   e    l   c   y   c    3   m    E     C     A     F   n   a   s   e   n    i    l   t   u   o   e   c    i   o   v   e   c   u    l

  t   s   a    f   e    h    T  .    1    2     3    1  .   m   m  ,    0    6  .   p   o  ,   s   u   e    h    t   e   m   o   r    P


   f   o  .   e   r    F   o   c   s   s    d    l    d   o   e    h   c   e   u   c    d    l   e   u    R   w  .   o    2    l   s   e   e    l   p    h   t    l   e   m   i   a   x    h    E   w  

 .   n   o    i   t   r   o   p   o   r   p    l   a   r   o   p   m   e   t   y    l    h   g   u   o   r   n      i   t   r   a   p   e   c   u    l

  w   o    l   s   e    h    T

  :    3   e    l   p

  m   a   x    E


 Victoria the Progressive: The Cadential Formula as Historical Nexus  

 Tomás Luis de Victoria has been overshadowed in scholarly discourse both by the more conservative Palestrina and by the more radical Florentine Camerata. This paper will wil l use Victoria’s Officium Defunctorum  (1603)  (1603) to exemplify some previously-unexplored connections

between prima

 pratica  and  and seconda pratica music. While the seconda pratica 1 is usually characterized by its free treatment

of dissonance, Victoria’s music is considered conservative, even mystical, exemplifying the earlier polyphonic style codified by Zarlino (1558). 2 This paper will not contradict these claims, but will show how Victoria’s cadential elaborations position his music as a link between the two styles. I will demonstrate that Victoria’s cadential formulae are typically as elaborate as those in Jacopo Peri’s  Euridice (1600) ,  ,3 if not more so, and that

the cadence serves as a meeting point between the more

progressive side of the prima pratica and the more traditional side of the seconda pratica . Example 1 shows two G cadences,4 each based on the figured-bass pattern 3-4-4-3.5 The only structural difference between them is the placement of B-flat: in example 1a, it creates an “augmented” sonority on the downbeat, whereas in example 1b it appears as part of a 6/4 sonority on beat two. Surprisingly, 1a is taken from Victoria’s work, and 1b from Peri’s. The B-flat in 1a, the only “madrigalism” in either cadence,6 comes from the prima pratica  work,  work, and the gentler cadence 1

  As presented in classroom texts; see, for example, Burkholder  As Burkholder 2010 (297-98), (297-98), or Palisca 1991

(30ff.). 2

See Atlas 1998 (613-15), Reese 1959 (608), and Cramer (1990).


I have chosen Peri’s work for comparison because it typifies the seconda pratica  style.  style.


For comparison, I have normalized the texture and omitted the text.


See Arnold (1964, 40-41) for a discussion of this figure.





 The sonority appears under the word “flentium” “flentium” (weeping). 


from the seconda pratica work. Nor is this an isolated instance: example 2 shows the most lavishly elaborated version of the same pattern from Victoria’s work, with its ornamented suspension and poignant 6/5 sonority on the fourth beat of the second bar. By contrast, the most elaborate version of the figure from Euridice  is  is given in example 3. It I t contains the same 6/5 sonority as Victoria’s example, but uses none of the same rhythmic complexity or the extravagant ornamentation. Again, Peri’s use of the cadential figure is much tamer than Victoria’s.  This paper will compare several instances of this cadential figure, both to the composer’s typical style and to the other style s tyle in question, with an aim towards a stylistic generalization:  Victoria’s work, with its more homogeneous texture, elaborates the figure figure in order that its heightened expressivity might more clearly mark its cadences. Conversely, Peri uses the same figure to better mark his own cadences by their lack of expressivity (compared to the rest of the work’s style). Thus, as the title suggests, the paper will define the early seventeenth-century cadence as a historical nexus, a meeting point between the most progressive features of the sixteenth century and the most conservative aspects of the seventeenth.



 Victoria, Officium defunctorum , Graduale mm.26-28.

Peri, Euridice, Scene II, mm. 404-6. 


Selected Bibliography  Arnold, F. T. 1965. The Art of Accompaniment from a Thorough-bass as practiced in the XVIIth & XVIIIth Centuries. New York: Dover Publications.

 Atlas, Allan. 1998. Renaissance Music. New York and London: W. W. Norton & Co. Burkholder, J. Peter, Donald Jay Grout, and Claude V. Palisca. 2010. A History of Western Music , 8th  ed. New York and London: W. W. Norton & Co. Cramer, Eugene. 1990. “Some Elements of the Early Baroque in the Music of Victoria,” in De  Musica Hispana et Aliis, v. 1 (Universidade de Santiago Santiago de Compostela), 501-38.

 ______. 2001. 2001. Studies in the Music of Tomás Luis de Victoria . Burlington, VT: Ashgate. Hirschl, Walter. 1933. The Styles of Victoria and Palestrina: A Comparative Study, with Special Reference to Dissonance Treatment . Ph.D. diss., Univ. of California, Berekeley.

Kriewald, James A. 1968. The Contrapuntal and harmonic Style of Tomás Luis de Victoria. Ph.D. diss., Univ. of Wisconsin. O’Regan, Noel. 1994. “Victoria, Soto, and the Spanish Archconfraternity of the Resurrection in Rome.” Early Music  22/2  22/2 (May): 279-295. Palisca, Claude. 1991. Baroque Music , 3rd ed. Prentice-Hall History of Music Series, H. Wiley Hitchcock, ed. Upper Saddle River, NJ: Prentice-Hall. Prentice -Hall. Peri, Jacopo. [1600] 1981. Euridice: An Opera in One Act, Five Scenes. Recent Researches in the Music of the Baroque Era, vols. 36-37, edited by Howard Mayer Brown. Madison, WI: A-R editions. Rubio, Samuel. 2000. Tomás Luis de Victoria: Officium Defunctorum . Ávila: Caja de ahorros de avila.


 Young, Edward. 1942. The Contrapuntal Practices of Victoria . Ph.D. diss., Univ. of Rochester. Zarlino, Gioseffo. [1558] 1983. The Art of Counterpoint: Part III of Le istitutioni harmoniche. Trans. Guy  A. Marco and Claude Palisca.New York: Da Capo Press.


"The Role of the Producer in Hip-Hop: An Ethnographic and Analytical Study of Remixes" Analytical publications on hip-hop have usually focused on the rapper's skill while overlooking the producer's contribution, leading to a misunderstanding of the creative process in hip-hop. A case in point is Kyle Adams' article analyzing hip-hop tracks. Adams makes the erroneous assumption that a completed musical track is given to the rapper, who records on top of it. He therefore concludes that the music is "precomposed" and credits all text-music interaction to the rapper's skill. In contrast, the 60 rappers and hip-hop producers I have interviewed say that the rapper receives a simplified track, upon which he/she improvises. As producer Pete Rock explains: "To start, I give them the beat, Plain Jane as it is. Too much sound would throw them off." This "plain beat" is a drum track and a few other rhythmic elements, emptied to provide ample space for the rapper to vary his/her vocal rhythms. The producer and rapper then test the combination in the studio, after which the producer refines the track: "It's like baking a cake—I wait for the cake to cool, and then I add the frosting." This "frosting" includes horns, scratches, and other sounds added—or deleted—to emphasize the rapper's words and adjustments to the drum track to coincide with the rapper's rhythm. Producers also adjust the track's key to fit the rapper's pitch contour, as DJ Kentaro did with the Pharcyde. Hence, many of the musical aspects of rap are likely the handiwork of the producer instead of the rapper. The producer's imprint is even stronger today, as ProTools has given producers the ability to edit iteratively at low cost. Given the lack of manuscripts, ethnography is among the few avenues to understanding the creative process in hip-hop. Many hip-hop artists have not had formal training in music and are not bound by the aesthetic standards of most Western music, such as metric consistency or absolute pitch. The producer's edits are deliberate aesthetic



"The Role of the Producer in Hip-Hop: An Ethnographic and Analytical Study of Remixes" responses, illuminating what combinations of sounds—rhythms, instrumental loops, and vocal declamations—are valued by the hip-hop audience. My paper shows the central role of the producer in hip-hop recording by combining ethnography and musical analysis. I first describe the creative process through quotes from my interviews with artists including Pete Rock and DJ Krush, combined with musical examples. I then illustrate the musical contribution of producers through an analytical comparison between the 1995 and 2006 versions of "Only the Strong Survive"  by CL Smooth and DJ Krush. Smooth's rap consistently hits the first sixteenth note of  beats 2 and 4 on a stress accent (capitalized, Example 1), coinciding with the snare drum in the 1995 version (Example 2, "down," "take"); meanwhile his syncopated delivery ("for my crown") fits with the bass line. In 2006, when Krush fitted CL Smooth's vocal track to a completely different accompaniment, he noticed a pervasive triplet pattern in Smooth's rap; his refashioned drum pattern matches and complements Smooth's rhythms (Example 3). Through analysis, I demonstrate that the hip-hop track ends not with the rapper, but with the editing producer; through my interviews, I demonstrate the value of ethnography in the analysis of popular music.



"The Role of the Producer in Hip-Hop: An Ethnographic and Analytical Study of Remixes": Examples Example 1 presents Smooth's rap, with each row representing a measure in 4/4, each box representing one beat, an "x" representing a spoken 16th-note pulse, and a "-" a silent or held pulse. Stress accents are written in capital letters, with rhymes and assonances in italics. While Smooth places his rhymes in ever-changing positions (e.g., "losers," "prisoners," and "maneuvers" on beats 4, 1, and 3 respectively), he consistently hits the first sixteenth note of beats 2 and 4, on a stress accent. Example 1: "Only the Strong Survive" (1995), layout of CL Smooth's rap


"The Role of the Producer in Hip-Hop: An Ethnographic and Analytical Study of Remixes": Examples Example 2: "Only the Strong Survive," 1995 version, m. 6

Example 3: "Only the Strong Survive," 2006 version, mm. 3–4


Formal Functions and Retrospective Reinterpretation in the First Movement of Schubert’s String Quintet D. 956

                     

                     

                                                                                                                                              

                                                                           

                                                                                    


Form Fucntions and  Retropective Reinterpretation   2                     

                                                           

                                                                                       

                                                                                   

                 Music Theory   Spectrum                    Analysis       Music Analysis

                   NineteenthCentury  Music      Sonata Forms.                          Beethoven Forum   

  In the Process of  Becoming: Analytical    Analytical  and  Philosophical  Perspectives on Form in  Early  NineteenthCentury  Music                       19th Century  Music   


Form Fucntions and  Retropective Reinterpretation  3         

Ex. 2. Form-Functional Analysis of mm. 1-32


Form Fucntions and  Retropective Reinterpretation  4 

Ex. 3. Normative Recomposition of mm. 1-9

       


Form Fucntions and  Retropective Reinterpretation  5           


Key-Related Idioms in Mozart’s Music: A Peek  into  into his Creative Process? Is the choice of k eey y just a marginal aspect of musical composition or may it also significantly interact with musical substance? The issue has long intrigued music theorists, musicians and casual listeners.

Whereas the traditional discipline of “ ey characteristics” examines the

connections between specific

k eys eys

and modes of expression (a selection is supplied in

 bibliography items 1–10), newer research has started to consider associations between k eeys ys and concrete musical structures (bibliography items 11–17). However, a systematic, data-driven and rigorous investigation of the correlations between

k ey ey

and structure throughout a composer’s

 body of wor k  ks   has never yet been attempted. In this paper, we demonstrate the crucial role of

ey k ey

choice in determining concrete structural

features of musical substance as exemplified by the compositions of Wolfgang Amadé Mozart. By performing an extensive survey of harmonic, melodic and rhetoric phenomena in Mozart’s wor k  ks, s  , we show that associations between k eeys ys and musical matter are represented practically at all levels of his compositional thin k ing, ing, amounting to a statistically significant total (our main findings are summarized in Figure 1). By analyzing topological and gestural aspects of opening themes in Mozart’s wor k  ks   for orchestra, we find two prototypes to be significantly

k ey-related: ey-related:

an antithetic asymmetric opening topos strongly relates to E-flat major, and opening themes entirely in loud dynamics tend to appear in G major. A six tone melodic motif

k nown nown


Tamino’s “Portrait Aria” (mm. 7–8) is shown to be highly specific to E-flat major throughout Mozart’s instrumental and vocal output. Finally, the move to the parallel minor within a major k ey ey

context (minorization) is explored in Mozart’s instrumental movements of the sonata type.

Whereas the frequency of minorization as employed in any given k eey y strongly correlates with the


 position of the k eey y within the cycle of fifths (see Figure 2), more specific types may be attached to specific k eys. eys. Drawing on a highly significant overall result of the first stage of our investigation (p<1.5*10



we proceed to examine the possible scope of structural ey relatedness in Mozart’s compositions. Analyzing a selection of tentative “k ey-related ey-related idioms” in Mozart’s sonata-allegro movements in C major, we show them to constitute a “pool” of musical structures and strategies Mozart would employ independently of one another when composing in that k eey, y, and demonstrate a general tendency of k ey-relatedness ey-relatedness to intensify with time (see Figure 3). We further point to one strik ing ing example of “C-majorness”: the march K.408/3, consisting to a considerable part of nearly literal replicas of passages appearing in other pieces in this k eey. y. Mozart’s well documented superb sense of perfect pitch, offers one possible explanation for k eeyyrelatedness in his wor k  ks   (15, 18–19). An important question relates to the role of similar  phenomena in the music of other composers, with or without perfect pitch.

We offer an

anecdotal comparison between Mozart and his elder contemporary Joseph Haydn, based on an analysis of the overall distribution of k eeys ys in their wor k  ks. s  .


Bibliography (in order of reference/chronology) 1. J. Mattheson, Das neu-eröffnete Orchestre  (Hamburg, 1713). 2. C. F. D. Schubart, Ideen zu einer Ästhetik der Tonkunst  (Degen,  (Degen, Wien, 1806). 3. W. Lüthy, Mozart und die Tonartencharakteristik  (Heitz,  (Heitz, Strassburg, 1931). 4. F.O. Souper, Mozart and tonality. The Monthly Musical Record 63, 202–203 (1933). 5. A. Hyatt-King, The consistency of Mozart's use of k eeys. ys. The Monthly Musical Record 67, 104–107 (1937). 6. A. Einstein, A. Mendel, Mozart’s choice of k eeys. ys. The Musical Quarterly 27, 415-421 (October 1941). 7. R. Tenschert, Die g-Moll-Tonart bei Mozart. Mozart-Jahrbuch 1951, 112–122 (1953). 8. M. Chusid, The significance of D minor in Mozart’s dramatic music, Mozart-Jahrbuch 1967, 87–93 (1968). 9. R. Steblin,  A History of Key Characteristics in the Eighteenth and Early Nineteenth Centuries (Univ. of Rochester Press, Rochester, 1981). 10. W. Auhagen, Studien zur Tonartencharakteristik in theoretischen Schriften und  Kompositionen vom späten 17. bis zum Beginn des 20. Jahrhunderts  (Lang, Frank furt furt a.M., 1983). 11. P. Mies, Der Charakter der Tonarten , (Staufen, Cologne, 1948) 12. D. Beach, A recurring pattern in Mozart’s music.  Journal of Music Theory 27, 1-29 (Spring, 1983). 13. J. Webster,  Haydn’s ‘Farewell’ Symphony and the Idea of Classical Style: ThroughComposition and Cyclic Integration in His Instrumental Music  (Cambridge Univ. Press, Cambridge, 1991). 14. M. C. Tusa ,Beethoven’s ‘C-minor mood’: Some thoughts on structural implications of k eey y choice. Beethoven Forum 2, 1–27 (1993). 15. W. Gloede, Motivstruk tur tur und Tonart bei Mozart.  Archiv für Musikwissenschaft  50, 26–43 (1993). 16. S. Jan,  Aspects of Mozart's Music in G Minor. Toward the Identification of Common Structural and Compositional Characteristics (Garland Publishing, New Yor k  k,  1995). 17. M. Anson-Cartwright, Chromatic features of E-major wor k  ks   of the Classical Period. Music

Theory Spectrum 22, 177-204 (Autumn, 2000). 18. Mozart. Briefe und Aufzeichnungen. Gesamtausgabe , Deutsch O.E., (Bärenreiter, Kassel, 1962-), vol. IV, 179. 19. D. Deutsch, The puzzle of absolute pitch. Current Directions in Psychological Science 11, 200-204 (December 2002).


  s   s   s   e   e   w   s   p   o   o   y    l    h    t   s   c   s   o    t   e   n   n   e   o   r   m   m   e   p   h   e   l   u   l    f    t   o   n   o   g   c   g   a    t   y   n    ”   c   e    i   e   e   v   n   c   r   r   e   n   u   e   s   r    l   p   o    i   a   T   c    h    f   u   a  .   o   t   r    i   s   n   n   g   s   m   e   i   o    S   s   o    h    i   r    “   c    f   r   e   r   s   o   h   a    t    l    t ,   p    f   m   u   o   s   o    d   s   e   c   e    t   r    t   c   e   a    t    l   e    l   n   p   p   e    i   a   r   s   c   a   y   t    l    i   u    f    l    l    i    t   a   m   n   r   n   g   t   u   a   r    i   c   o   s   s    i    f    f   e    t    i   s   g   n   n   o     o   g   c    i    i    t   m   i   s   r   c   o   i    3   s    t   r    1   e   s   e   r    h   o   e   e   r   c    h    t   s    t   o   t   p   y   a   r   e   o   t   e   s    d    t    i   n    f   o   r   a   r   p   )   p   a   c   e   s   m   e    i    l    h   u   o   c   t   a   t    l   a   e   i    (    f   v    l   o    b   n  .    h   a   i   s   o   c   e    t    5   e    t   a    0   e   a   e   h  .    h    0   z   h   t   s    T   i    <   r    i   c   t   p   n   n   o   e    l    h   n   o   s    i   e    i    t   m  w  e   v   r   a   e   o   p    l    f    t   g    i    t   o   s   e    t   r   a   s   s   y   n   t   e   e   e    i   v   p   k   m   m   n   t   y   e   l   u   i    i    l    h    f   s    t   o   e   o   u   s   c   c   s   o    t    d    l   r   a   w   l   o   s   a   n   a   c   e   i   v   h    i    f   e   i    f   o   s    h    i   e   t   n   t   n   g  ,   m   d   i   e   )   r   s   n   u    d    h    l   a    t    l   o   o  ,   w   o   c   n    l   m   b    (   o   e    i   o   f    ”    t   y    b   r   i   a    t   e    f   s   o   k   i   e   c    “   u   s   m   d   o   l   s   e   s   m   ”   t   v   a   a   a   o   o   i    i   n   c   y   R    i    d   e   D    i   o   s    k   s    d   m   a   e   T   A   h   F    t   c   t   a   “   “   a   h    i    l   e   h   e   e   e   h   w   r   r   t   s   o    T    f   y   t  .   e   e   e   o   )   p   y   u    K  g   e    t    l  „   n   n   :    i    1   n    i   r     e   a   v   o   r   a   l   p   t  .    t    d   p   r   g   n   e   l    i   e   u   h    l    F   p   (    t   a


 ,    l  .   r   e   t   o   s    l    l   a   s   s   a   o  ,    l   r   n    f   p   r   a   e   a   a    i   p   e   u  ,    l    h   e   p   r   r   r   s   a    i   o   e   v    h   e   e    h    h   r   n    t   e    t    t   o   o   n   g    i   n   m  g    d    t   a    i   o   r   n   z   s   a   d   e   e   a     y     e       K



  t  n   e     m   e   v    o     m    o   r  g   e  l l  a   -  a   t  a   n    o   s  r  e    p  s   e   c   n   a   t   s   n  i  n    o  i   t  a   z  i  r    o   n  i   M

  s   y   a   r    h   v   t   a    l    i   y   e   –   d   u   k   e   d   o   t   e    k   s    k   y    t   s   e   c   ’   r   c    t   a   r   o   p    k   e   r    l    j   r   a   a   ’   s   r   a   h    b   z   o   e   m  s    t   c   o   t   n    h   e   n   e    M   n   o   e  ,    t   o   y   r   m   o   e   m   h    l    d    t   v   e   g   g   m   g   n   s   n   i   o   n   o   a   i   m   c   i    d    d    b    t   n   e   i   c   n   s   r   o   a   e    h   c   r    t   e   c   o   p   v    t   s   e    h   n   e    t    A   s    b    i   u    i    l  .   r   r   s   s   w   d   s    ’   o   r    t   s   c   r   s   n   u   e  ,   a   e   e   c   v   s    t   r   z    l   a   t   c   o   l   o   a    l    t   e   o   v   n   r   n    h    M   i   n   e   r   e   o   d    T   g    i   o  ,  .    t    i   n   n   c   )    0   -    i    i   w   t    i   o    l   y   1   r   a   z   c   a   o   g    0   a   o    f    h   n    1   z   n    i   s   o    i   o   r    *  ,   r   r    5    t   o   s  .   m   b   e   s   n    h    5    i    t    t    h   s   =    f   c   m    i   p   i   n    f   m   u    (    h   e   n    f   n   e   w   o   i   m    t   e   s   e   e   a   v   a   y   h   r    b    l    t  ,   c   o   n   e   e   r   y   o   o   t   c   c   i    i   n   m   a    t   u   r   o   e   a    d   r   z    h   e   e   m    t    l   g   r    h   r   e   i    f    t    l   e   o   o    l   o   l    t   n   g    l   a    i   a     n   y   w   a   m   i   c    t   e   r    t   a    i   c   n   a   p   e   e   d   e   v   e   n   h   f    l    t    f   o   a    h   n   s   a    i    t   s   r   e    t   e    t   s   r    i   o    h   a   a    t   a    h   g   p    i   e    A   g   n    i   n   h   e   i   c   c   s   o   t   e   v    )    i    l    h    h   o   o    f    t    i   c    A    t  ,   y   e    (   r   s   a  .    M   e  .   z   e   n   e    i   s    l    )    k   i  .   r   o   s   p   p   o    t    i   s   n   e    d   a   c   e   i   s   n   s   z   a   n   r    i   o    i   r   g   m  p   e   r   y   y   m  o   n   l   p   i   n   r   p   e   i    i    ”    t   r   p   k   t   m   e   e   a   a   g   f   n   o   n   n   o   s    i   g   i   n   t    t   r   e   e   a   a   d   y   c    l    d    f    i   c   m  n   n   n   s   a   s   e   a   e   s   n   d    t    i   o    i   r    d   e   e   n   l   c   o    h   t   e   h   e   l   y   v   w  u   a   o   t    t    “   (   s  ,   s  ,   u   y   e   s    ’    t    l   y   o  .    h   y   r   a   g   e   e   v   d    T   e   z   o   n   i   r    2   :   r   o   l   a   l   n    t   a   c   e   a   o   o    b   u   t  .    k   p   n   M    )   a   y   g   i   s   m    i   y   i   e    F   m   B    (    b   s   e   r    k


    r     a     e       Y


  t  n   e     m   e   v    o     m   r  e    p  s   t  n   e     m   e  l  e  ”  l    o    o    p   “  r    o   j  a     m    C       B

   f   o   r   a    t   e   e    b   n   y   e   o   m  r    t   e  ,   y   p   s   s  .   e   l   o   t   e   r   p   n   p   o   t   e   y   p   y   j    t   a   m   m   o   o   e    t   e   m   t   o   o   e   v   r   r    h    C   p   n   p   t   o   s   m   n    i   e    t   s   r   e   s   e   v   t   n   e    l   e   e   n   f    h    t   s   s   e   p   e   o   r   s   m   p   u   e    l   e    h   w   r   a   v   c   o   o   a   )   v    h   e   s   m  e    (   s    B   g    )   o  .   a   r   w   r    5    A   g    (   o   e    0  .   e  .    h   v    0   s    l   s    l   a    l   a   s   m    h    .   e    t   o   t   a   y    i    )   v    i   e    6   e   a      d   n   k   l   w   0    i  ,    1    t   r   r   o   e   a   e   s   o    h    j   r   m   *    t    2    i   a   5   o    t   o    j    4  .   m   7   a   r   n   s   e    i    ’   s   m  v   1    C   t   =   r    t   o   (   e   p    C   a   n   v   s   z    i   e   h    t    t   o   e    t    i   n   a   M  m   e    t   r   e   w  m  v   n   u   v    f   e    d    t   o   o   e   c    f   o   t   u   m   t   a   e    l   e   d   n    i    ”   e   o   h    l   c    ”    t   r    l    i   o    t   o    3   o   s   o   w    4   s   o   p   n   o   a   p   n   n    “   s    “   i   o   s   y   n   s    i    l   g    i   e   e    A   i   o   r   n   v   v   :   r   a   i    P   e    3   r   p   t   a   a   l   e   d  .   u   m   t   c   g   e    i   c   o   n   e   h    F   o   C   t    t   n   a

      x       x       x       x   x




Metric Dissonance in the Scherzo of Mahler’s Fifth Symphony As Williamson (2007) observes, the voluminous literature on Mahler’s symphonies includes surprisingly little close analysis. There are, of course, well-k nown nown exceptions such as full-scale studies of the Sixth and Ninth Symphonies by Samuels (1995) and Lewis (1984) respectively. Most recently, the rotational element of sonata form emphasized by Hepok os osk i and Darcy (2006) has spurred a re-evaluation of Mahler’s handling of this form, as in Darcy (2001), Kaplan (2005), Marvin (2009), and especially Monahan (2008). The extant analytic writings on Mahler’s symphonies tend to emphasize tonal structure (esp. associative k eey y relationships) and formal design (esp. sonata form); most comment extensively on inter-movement connection, a feature much contemplated by Mahler himself. The upsurge in rhythmic-metric analysis during the past two decades has not yet extended into Mahler scholarship. This is particularly stri k ing ing given the centrality of rhythm to hermeneutic studies that rely on accurate identification of the dance topics Mahler deploys and distorts (see, for instance, the discussions of the scherzo from the Ninth Symphony in Draughon [2003] and Newcomb [1992 and 1997]). Mahler’s music is not without rhythmic-metric complexity, and nowhere is this more apparent than in the massive scherzo of the Fifth Symphony. The first of the Fifth’s movements to be composed, the scherzo Mahler lik ened ened to a “comet’s tail” for Natalie Bauer-Lechner (1980: 173), and he lamented the movement was “enormously difficult to wor k  k out,”    out,” a sentiment shared by reviewers of its earliest performances. In part, the difficulty arises from the pervasively contrapuntal texture—celebrated by Adorno (1992: 102–103)—but rhythmic-metric factors contribute substantially. A glance at the opening  phrase, shown in Example 1, reveals wea k  D3+1  D3+1 dissonance in the horns, a delayed initial hyperdownbeat, and D3+1 at a hypermetric level. Although hemiola is commonly referred to as metric dissonance, the strong G3/2 dissonances in mm. 6–9 and 12–13 actually counteract the


initial destabilizing elements. Coo k e (1982: 101–102) notes that Mahler follows this 12-measure  phrase with 11- and 13-measure variations. Such manipulations, however, are characteristic of the entire movement; despite its expressive contrast, the graceful Trio I begins analogously with  phrases of 8, 7, and 9 measures. Example 2 provides a further illustration of the movement’s language; observe the different hypermetric reinterpretations of the arrivals on VI (mm. 66 and 83), compression of the original theme (mm. 67–72), and displacement dissonances of varying types and strengths (mm. 73–81). This paper will identify the principal rhythmic-metric features that contribute to the scherzo’s “comet-lik e” e” energy and changeability. It will then outline a metric narrative for the movement: a progression through increasingly intense conflicts as thematic materials are combined, followed by a progression towards more periodic surface hypermeter and somewhat lesser metric dissonance in the movement’s later sections. This metric narrative suggests that the scherzo remains a site of considerable unrest—as posited by writers including Mitchell (1999: 300–307) and Hefling (2007: 114–117)—and does not constitute an abrupt and complete rejection of the turmoil of the preceding movements as interpreted by Cook e (1988: 82). More  broadly, close rhythmic-metric analysis offers a new perspective on Mahler’s ability to fuse sharply contrasting dance-inspired melodies into a sweeping, almost overwhelming, symphonic movement.

Mahler, p. 2


Bibliography Adorno, Theodor W. [1971] 1992. Mahler: A Musical Physiognomy. Trans. Edmund Jephcott. Chicago: University of Chicago Press. Bauer-Lechner, Natalie. 1980. Recollections of Gustav Mahler . Trans. Dik a Newlin. Ed. and   annotated by Peter Frank lin. lin. London: Faber & Faber. Cook e, e, Deryck . 1982. “Mahler’s Melodic Think ing.” ing.” In Vindications: Essays on Romantic

95–107. London: Faber Faber. Music,1988.  ________. Gustav Mahler: An&Introduction to his Music. 2d ed. Cambridge: Cambridge   University Press. Darcy, Warren. 2001. “Rotational Form, Teleological Genesis, and Fantasy-Projection in the   Slow Movement of Mahler’s Sixth Symphony.” 19th-Century Music 25/1: 49–74. Draughon, Francesca. 2003. “Dance of Decadence: Class, Gender, and Modernity in the Scherzo   of Mahler’s Ninth Symphony.” The Journal of Musicology , 20/3: 388–413. Floros, Constantin. [1985] 1993. Gustav Mahler: The Symphonies. Trans. Vernon and Jutta   Wick er. er. Portland, OR: Amadeus. Hefling, Stephen E. 2007. “From Wunderhorn  to Rück ert ert and the Middle-Period Symphonies.”   In The Cambridge Companion to Mahler , ed. Jeremy Barham, 108–127. Cambridge: Cambridge University Press. Hepok os osk i, i, James, and Warren Darcy. 2006. Elements of Sonata Theory: Norms, Types, and  an d 

 Kaplan, Deformations in the Late-Eighteenth-Century Sonata. Oxford: Oxford University Press. Richard A. 2005. “Analytical Approaches: Multi-Stage Exposition in Mahler’s Symphonies.” In Perspectives on Gustav Mahler , ed. Jeremy Barham, 219–233. Aldershot: Ashgate. Krebs, Harald. 1999. Fantasy Pieces: Metrical Dissonance in the Music of Robert Schumann .   New Yor k  k:  Oxford University Press. Lewis, Christopher O. 1984. Tonal Coherence in Mahler’s Ninth Symphony . Ann Arbor, MI:   UMI Research Press. Marvin Mar vin,, Wil Willia liam. m. 2009. “Mahler’s “Mahler’s Thi Third rd Sym Symphon phony y and the Dis Disman mantli tling ng of Sona Sonata ta For Form.” m.” In Keys   to th thee Dra Drama ma:: Ni Nine ne Pe Persp rspec ecti tives ves on So Sonat nataa Fo Form rm, ed. Go Gordo rdon n Sl Sly, y, 53– 53–71. 71. Far Farnha nham: m: Ash Ashga gate te.. McClelland, Ryan. 2006. “Extended Upbeats in the Classical Minuet: Interactions with   Hypermeter and Phrase Structure.” Music Theory Spectrum 28/1: 23–56. Mitchell, Donald. 1999. “Eternity or Nothingness? Mahler’s Fifth Symphony.” In The Mahler Companion, ed. Donald Mitchell and Andrew Nicholson, 236–325. Oxford: Oxford   University Press. Monahan, Seth. 2008. “Mahler’s Sonata Narratives.” Ph.D. diss., Yale University.  Newcomb, Anthony. 1992. “Narrative Archetypes and Mahler’s Ninth Symphony.” In Music and Text:: Cri Text Critic tical al Inq Inquir uiries ies, ed. Ste Steven ven Scher Scher,, 118– 118–136. 136. Camb Cambrid ridge: ge: Cam Cambri bridge dge Uni Univer versit sity y Pre Press. ss.  ________. 1997. “Action and Agency in Mahler’s Ninth Symphony, Symphony , Second Movement.” In Music and Meaning , ed. Jenefer Robinson, 131–153. Ithaca, NY: Cornell University Press. Reilly, Edward R. 1997. “The Manuscripts of Mahler’s Fifth Symphony.” In New Sounds, New Century: Mahler’s Fifth Symphony and the Royal Concertgebouw Orchestra , ed. Donald   Mitchell, 58–63. Amsterdam: Konink lij lijk  Concertgebouwor   Concertgebouwor k  kest. e  st. Samuels, Robert. 1995. Mahler’s Sixth Symphony: A Study in Musical Semiotics. Cambridge:   Cambridge University Press. Williamson, John. 2007. “New Research Paths in Criticism, Analysis and Interpretation.” In The   Cambridge Companion to Mahler , ed. Jeremy Barham, 262–274. Cambridge: Cambridge University Press. Mahler, p. 3


   4  .   p  ,   r   e    l    h   a    M

   5    1   –    1  .   m   m    f   o   s   e   r   u    t   a   e    f   c    i   r    t   e   m     c    i   m    h    t   y    h   r   :   o   z   r    h   e   c   s  ,    5  .   o    N   y   n   o    h   p   m   y    S  ,   r   e    l    h   a    M  .    1   e    l   p   m   a   x    E


   )   e   g   a   p    t   x   e   n   o   s   e   u   n    i    t   n   o   c    (

   3    8   –    2    6  .   m   m    f   o   s   e   r   u    t   a   e    f   c    i   r    t   e   m     c    i   m    h    t   y    h   r   :   o   z   r    h   e   c   s  ,    5  .   o    N   y   n   o    h   p   m   y    S  ,   r   e    l    h   a    M  .    2   e    l   p   m   a   x    E

   5  .   p  ,   r   e    l    h   a    M


   6  .   p  ,   r   e    l    h   a    M


Half Full, or Fully Half?: Distinguishing Half and Elided Authentic Cadences

Distinguishing between a half cadence and an authentic cadence is one of the first things taught in music analysis classes. This should be an easy tas k , yet often it is not: at times even seasoned scholars and performers disagree on whether something should be considered an elided authentic cadence or a half cadence (Ex. 1). Much of the problem derives from the ambiguous nature of the half cadence, in which an unstable harmony ends a progression so that—in Schen k erian erian terms—it is “closed off” from what follows. But how can an unresolved harmony serve as a satisfactory endpoint? Surely there is almost always some connection between the V of a half cadence and the tonic that begins the next phrase; in many cases a short bridge even lin k s the halfcadential V to the ensuing tonic. But how strong may such post-cadential filler be before it should be regarded as a full-fledged part of the phrase, rather than simply a link  (Ex.  (Ex. 2)? In differentiating half and authentic cadences, one properly should consider three interrelated factors: formal function (for example, one would more li k ely ely expect a half rather than an elided authentic cadence to close a transition or development section); demarcation in texture and rhythmic grouping (a strong demarcation more lik ely ely follows the end of a phrase); and harmonic status (specifically, a half cadence is typically mar k  ked e  d 7

 by a root-position V triad, as opposed to an inverted V ). When these three features coincide, it often is obvious whether a half or authentic cadence is present. However, one should always be prepared to come across non-normative situations, or cases where these  parameters are unclear or in conflict with one another.  

For instance, ambiguities may arise when an expected formal cadence is weak ly ly

demarcated (as in Exx. 2 and 3a); when a strongly demarcated formal segment concludes


“Half Full, or Fully Half?:  Examples page 2 7

with an inverted V  (3b); or when the point of demarcation is debatable (3c). Such passages frequently give rise to disagreements regarding cadential status, in turn leading to broader analytic disputes concerning large-scale formal design and voice-leading (Ex. 4). The distinction between half and elided authentic cadences need not be regarded as an either/or situation, however. On the contrary, admitting a degree of fuzziness in determining cadential status—as well in determining “closed “close d off” status—often allows for a richer and more nuanced understanding of the various analytic and performance  possibilities. In my presentation I will explore the criteria used to distinguish half and elided authentic cadences; examine selected excerpts whose cadences have inspired contrasting interpretations by distinguished scholars and performers; reconsider some more flexible approaches to cadences offered by earlier theorists (such as Anton Reicha); and discuss the pedagogical and performance implications that accrue from a more fluid approach to dealing with cadences. As I shall argue, such a flexible understanding of cadences encourages a re-evaluation of certain central aspects of various modern approaches to form and voice leading.


Half Full, or Fully Half? Examples Example 1. Passages in which analysts and performers interpret cadential status differently. (a) Mozart, Sonata for Piano in A Minor, K. 310, I, bars 1–10: HC in bar 8 or IAC in bar 9?


(b) Mozart, Sonata for Piano in C Major, K. 309, I, bars 1–9: HC in bar 7 or PAC in bar 8?

Example 2. Beethoven, Concerto for Piano and Orchestra in G Major, Op. 58, I, bars 243–253 .


“Half Full, or Fully Half?:  Examples page 2

Example 3. Ambiguous situations. (a) Beethoven, Trio for Piano and Strings in G, Op. 1, No. 2, bars 91–101 (HC or elided PAC?).

(b) Haydn, Symphony No. 54 in G, IV, bars 98–104 (HC on inverted V7, or not?).

(c) Haydn, Symphony No. 5, II, bars 28–33 (where is phrase demarcation?).


“Half Full, or Fully Half?:  Examples page 3

Example 4. Selected cases where different interpretations of cadences lead to drastically different formal and/or voice-leading interpretations. (a) Beethoven, Concerto for Piano and Orchestra in G Major, Op. 58, I (cf. Ex. 2).

(b) Haydn, Symphony No. 5, II (cf. Ex. 3c).



Sponsor Documents


Forgot your password?

Or register your new account on INBA.INFO


Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in