Psychology

Published on May 2016 | Categories: Documents | Downloads: 41 | Comments: 0 | Views: 854
of 558
Download PDF   Embed   Report

psihoterapie

Comments

Content

Psychology, by Robert S. Woodworth

1

Psychology, by Robert S.
Woodworth
The Project Gutenberg EBook of Psychology, by Robert S. Woodworth
This eBook is for the use of anyone anywhere at no cost and with almost no
restrictions whatsoever. You may copy it, give it away or re-use it under the
terms of the Project Gutenberg License included with this eBook or online
at www.gutenberg.org
Title: Psychology A Study Of Mental Life
Author: Robert S. Woodworth
Release Date: February 25, 2010 [EBook #31382]
Language: English

Psychology, by Robert S. Woodworth

2

Character set encoding: ISO-8859-1
*** START OF THIS PROJECT GUTENBERG EBOOK PSYCHOLOGY
***
Produced by Don Kostuch
[Transcriber's notes] This text is derived from an unedited version in the
Internet Archive.
Page numbers are indicated by numbers enclosed in curly braces, e.g. {99}.
They have been located where page breaks occurred in the original book.
Labels and text in a figure that are not mentioned in the figure description
are included as a comma separated list, as in "(Figure text: cochlea,
vestibule, 3 Canals)".
Lengthy footnotes and quotations are indented.
Obvious misspellings and typos are corrected but inconsistent spelling is
not resolved, as in coordinate and coördinate.
Here are the definitions of some unfamiliar words (to me).
amour propre self-esteem; self-respect.
esprit de corps camaraderie, bonding, solidarity, fellowship.
motility (motile) moving or capable of moving spontaneously.
unwonted unusual. [End Transcribers's notes]
PSYCHOLOGY A STUDY OF MENTAL LIFE
BY ROBERT S. WOODWORTH, Ph. D. Professor of Psychology in
Columbia University

Psychology, by Robert S. Woodworth

3

NEW YORK HENRY HOLT AND COMPANY 1921
COPYRIGHT, 1921 BY HENRY HOLT AND COMPANY
Printed in the U.S.A.
PREFACE
A few words to the reader are in order. In the first place, something like an
apology is due for the free way in which the author has drawn upon the
original work of many fellow-psychologists, without any mention of their
names. This is practically unavoidable in a book intended for the beginner,
but the reader may well be informed of the fact, and cautioned not to credit
the content of the book to the writer of it. The author's task has been that of
selecting from the large mass of psychological information now available,
much of it new, whatever seemed most suitable for introducing the subject
to the reader. The book aims to represent the present state of a very active
science.
Should the book appear unduly long in prospect, the longest and most
detailed chapter, that on Sensation, might perfectly well be omitted, on the
first reading, without appreciably disturbing the continuity of the rest.
On the other hand should any reader desire to make this text the basis of a
more extensive course of reading, the lists of references appended to the
several chapters will prove of service. The books and articles there cited
will be found interesting and not too technical in style.
Much advantage can be derived from the use of the "Exercises". The text,
at the best, but provides raw material. Each student's finished product must
be of his own making. The exercises afford opportunity for the student to
work over the material and make it his own.
A first or preliminary edition of this book, in mimeographed sheets, was in
use for two years in introductory classes conducted by the author and his
colleagues, and was subjected to exceedingly helpful criticism from both

Psychology, by Robert S. Woodworth

4

teachers and students. The revision of that earlier edition into the present
form has been very much of a coöperative enterprise, and so many have
coöperated that room could scarcely be found for all their names. Professor
A. T. Poffenberger, Dr. Clara F. Chassell, Dr. Georgina I. Gates, Mr.
Gardner Murphy, Mr. Harold E. Jones and Mr. Paul S. Achilles have given
me the advantage of their class-room experience with the mimeographed
book. Dr. Christine Ladd-Franklin has very carefully gone over with me the
passages dealing with color vision and with reasoning. Miss Elizabeth T.
Sullivan, Miss Anna B. Copeland, Miss Helen Harper and Dr. A. H. Martin
have been of great assistance in the final stages of the work. Important
suggestions have come also from several other universities, where the
mimeographed book was inspected.
R. S. W. Columbia University August, 1921
CONTENTS

CHAPTER I

CHAPTER I
PAGE
WHAT PSYCHOLOGY IS AND DOES 1
Varieties of Psychology 2
Psychology as Related to Other Sciences 5
The Science of Consciousness 7
The Science of Behavior 8
Introspection 10
Objective Observation 11
General Lines of Psychological Investigation 14
Summary and Attempt at a Definition 17
Exercises 19
References 20

5

CHAPTER II

CHAPTER II
REACTIONS 21
The Reaction Time Experiment 22
Reflex Action 24
The Nerves in Reflex Action 26
Internal Construction of the Nerves and Nerve Centers 31
The Synapse 34
Coördination 37
Reactions in General 39
Exercises 42
References 44

6

CHAPTER III

CHAPTER III
REACTIONS OF DIFFERENT LEVELS 45
Different Sorts of Stimuli 47
The Motor Centers, Lower and Higher 49
How the Brain Produces Muscular Movements 53
Facilitation and Inhibition 54
Super-motor Centers in the Cortex 56
Speech Centers 57
The Auditory Centers 59
The Visual Centers 62
Cortical Centers for the Other Senses 68
Lower Sensory Centers 64
The Cerebellum 66
Different Levels of Reaction 65
Exercises 67
References 67

7

CHAPTER IV

CHAPTER IV
TENDENCIES TO REACTION 68
Purposive Behavior 70
Organic States that Influence Behavior 72
Preparation for Action 74
Preparatory Reactions 77
What the Preparatory Reactions Accomplish 79
What a Tendency Is, in Terms of Nerve Action 82
Motives 84
Exercises 86
References 88

8

CHAPTER V

CHAPTER V
NATIVE AND ACQUIRED TRAITS 89
The Source of Native Traits 90
Reactions Appearing at Birth Must Be Native 91
Reactions That Cannot Be Learned Must Be Native 92
Experimental Detection of Native Reactions 93
Is Walking Native or Acquired? 95
Universality as a Criterion of Native Reactions 97
Some Native Traits Are Far from Being Universal 98
Why Acquired Traits Differ from One Individual to Another 99
What Mental Traits Are Native? 100
Exercises 103
References 104

9

CHAPTER VI

CHAPTER VI
INSTINCT 105
The Difference Between an Instinct and a Reflex 107
An Instinct Is a Native Reaction-Tendency 109
Fully and Partially Organized Instincts 111
Instincts Are Not Ancestral Habits 113
Instincts Not Necessarily Useful in the Struggle for Existence 114
The So-called Instincts of Self-preservation and of Reproduction 115
Exercises 117
References 117

10

CHAPTER VII

CHAPTER VII
EMOTION 118
Organic States That Are Not Usually Classed as Emotions 119
How These Organic States Differ from Regular Emotions 120
The Organic State in Anger 121
Glandular Responses During Emotion 122
The Nerves Concerned in Internal Emotional Response 124
The Emotional State as a Preparatory Reaction 125
"Expressive Movements," Another Sort of Preparatory Reactions 126
Do Sensations of These Various Preparatory Reactions Constitute the
Conscious State of Emotion? 128
The James-Lange Theory of the Emotions 129
Emotion and Impulse 130
Emotion Sometimes Generates Impulse 132
Emotion and Instinct 134
The Higher Emotions 136
Exercises 136
References 136

11

CHAPTER VIII

CHAPTER VIII
INVENTORY OF HUMAN INSTINCTS AND PRIMARY EMOTIONS
137
Classification 138
Responses to Organic Needs 139
Instinctive Responses to Other Persons 145
The Play Instincts 151
Exercises 170
References 171

12

CHAPTER IX

CHAPTER IX
THE FEELINGS 172
Pleasantness and Unpleasantness Are Simple Feelings 173
Felling-tone of Sensations 174
Theories of Feeling 175
Sources of Pleasantness and Unpleasantness 178
Primary Likes and Dislikes 180
Other Proposed Elementary Feelings 184
Exercises 186
References 186

13

CHAPTER X

CHAPTER X
SENSATION 187
The Sense Organs 188
Analysis of Sensations 197
The Skin Senses 197
The Sense of Taste 201
The Sense of Smell 203
Organic Sensations 204
The Sense of Sight 204
Simpler Forms of the Color Sense 209
Visual Sensations as Related to the Stimulus 212
Color Mixing 214
What Are the Elementary Visual Sensations? 216
Theories of Color Vision 220
Adaptation 224
Rod and Cone Vision 226
After-images 226
Contrast 227

14

CHAPTER X

The Sense of Hearing 228
Comparison of Sight and Hearing 231
Theory of Hearing 234
Senses of Bodily Movement 236
Exercises 241
References 243

15

CHAPTER XI

CHAPTER XI
ATTENTION 244
The Stimulus, or What Attracts Attention 245
The Motor Reaction in Attention 248
The Shifting of Attention 251
Laws of Attention and Laws of Reaction in General 256
Sustained Attention 257
Distraction 259
Doing Two Things at Once 260
The Span of Attention 261
Summary of the Laws of Attention 262
Attention and Degree of Consciousness 265
The Management of Attention 267
Theory of Attention 268
Exercises 270
References 270

16

CHAPTER XII

CHAPTER XII
INTELLIGENCE 271
Intelligence Tests 272
Performance Tests 275
Group Testing 276
Some Results of the Intelligence Tests 278
Limitations of the Intelligence Tests 281
The Correlation of Abilities 288
General Factors in Intelligence 285
Special Aptitudes 288
Heredity of Intelligence and of Special Aptitudes 289
Intelligence and the Brain 292
Exercises 294
References 295

17

CHAPTER XIII

CHAPTER XIII
LEARNING AND HABIT FORMATION 296
Acquired Reactions Are Modified Native Reactions 297
Acquired Tendencies 299
Animal Learning 302
Summary of Animal Learning 310
Human Learning 311
Human Compared with Animal Learning 313
Learning by Observation 317
The Learning of Complex Practical Performances 321
Higher Units and Overlapping 323
Moderate Skill Acquired in the Ordinary Day's Work 326
Habit 328
Exercises 330
References 331

18

CHAPTER XIV

CHAPTER XIV
MEMORY 332
The Process of Memorizing 333
Economy in Memorizing 333
Unintentional Learning 346
Retention 348
Recall 364
Recognition 357
Memory Training 360
Exercises 364
References 365

19

CHAPTER XV

CHAPTER XV
ASSOCIATION AND MENTAL IMAGERY 366
What Can Be Recalled 366
Memory Images 368
Limitations of Imagery 371
The Question of Non-Sensory Recall 373
Hallucinations 375
Free Association 376
Controlled Association 381
Examples of Controlled Association 384
Exercises 386
References 388

20

CHAPTER XVI

CHAPTER XVI
THE LAWS OF ASSOCIATION 389
The Law of Exercise 389
The Law of Effect 391
Limitations of the Law of Exercise 393
Association by Similarity 395
Association by Contiguity 396
The Law of Combination 398
The Law of Combination in Recall 413
The Laws of Learning in Terms of the Neurones 414
Exercises 418
References 418

21

CHAPTER XVII

CHAPTER XVII
PERCEPTION 418
Some Definitions 421
The Difference Between Perception and Sensation 423
Perception and Image 425
Perception and Motor Reaction 427
What Sort of Response, Then, Is Perception? 431
Practiced Perception 433
Corrected Perception 435
Sensory Data Serving as Signs of Various Sorts of Fact 437
The Perception of Space 439
Esthetic Perception 443
Social Perception 444
Errors of Perception 446
Illusions 450
Exercises 460
References 461

22

CHAPTER XVIII

CHAPTER XVIII
REASONING 462
Animal and Human Exploration 463
Reasoning Culminates in Inference 465
Varieties of Reasoning 468
Deductive and Inductive Reasoning 474
Psychology and Logic 476
Exercises 480
References 480

23

CHAPTER XIX

CHAPTER XIX
IMAGINATION 481
Beginnings of Imagination in the Child 482
Preliminary Definition of Imagination 483
Play 485
The Play Motives 488
Empathy 491
Worry 497
Day Dreams 498
Dreams 499
Freud's Theory of Dreams 505
Autistic Thinking 508
Invention and Criticism 509
The Enjoyment of Imaginative Art 512
The Psychology of Inventive Production 517
Imagination Considered in General 519
Exercises 521
References 522

24

CHAPTER XX

CHAPTER XX
WILL 523
Voluntary and Involuntary Action 524
Development of Voluntary Control 526
Ideomotor Action 527
Conflict and Decision 528
Obstruction and Effort 535
Thought and Action 539
Securing Action 541
The Influence of Suggestion 546
Exercises 551
References 561

25

CHAPTER XXI

CHAPTER XXI
PERSONALITY 552
Factors in Personality 553
The Self 555
Integration and Disintegration of the Personality 558
The Unconscious, or, the Subconscious Mind 561
Unconscious Wishes and Motives 565
Exercises 571
References 571
INDEX 573
{1}
PSYCHOLOGY

26

CHAPTER I

27

CHAPTER I
WHAT PSYCHOLOGY IS AND DOES
THE SUBJECT-MATTER OF THE SCIENCE, ITS PROBLEMS AND
ITS METHODS
Modern psychology is an attempt to bring the methods of scientific
investigation, which have proved immensely fruitful in other fields, to bear
upon mental life and its problems. The human individual, the main object
of study, is so complex an object, that for a long time it seemed doubtful
whether there ever could be real science here; but a beginning was made in
the nineteenth century, following the lead of biology and physiology, and
the work of the investigator has been so successful that to-day there is quite
a respectable body of knowledge to assemble under the title of scientific
psychology.
Psychology, then, is a science. It is the science of--what shall we say? "The
science of the soul"--that is what the name means by derivation and ancient
usage. "The science of the mind" has a more modern sound. "The science
of consciousness" is more modern still. "The science of behavior" is the
most recent attempt at a concise formula.
None of these formulas is wholly satisfactory. Psychology does not like to
call itself the science of the soul, for that has a theological tang and
suggests problems that have so far not seemed accessible to scientific
investigation. Psychology does not like very well to call itself the science
{2} of the mind, as the mind seems to imply some thing or machine, and
there is no such thing to be observed (unless it be the brain and body
generally), and, anyway, psychology is distinctly a study of actions rather
than of things. Psychology does not like to limit itself to the study of
consciousness, but finds it necessary to study also unconscious actions. As
to "behavior", it would be a very suitable term, if only it had not become so
closely identified with the "behavioristic movement" in psychology, which
urges that consciousness should be entirely left out of psychology, or at
least disregarded. "Behavior psychology", as the term would be understood

CHAPTER I

28

to-day, means a part of the subject and not the whole.
[Footnote: A series of waggish critics has evolved the following: "First
psychology lost its soul, then it lost its mind, then it lost consciousness; it
still has behavior, of a kind."]
The best way of getting a true picture of psychology, and of reaching an
adequate definition of its subject-matter, would be to inspect the actual
work of psychologists, so as to see what kind of knowledge they are
seeking. Such a survey would reveal quite a variety of problems under
process of investigation, some of them practical problems, others not
directly practical.
Varieties of Psychology
Differential psychology.
One line of question that always interests the beginner in psychology is as
to how people differ--how different people act under the same
circumstances--and why; and if we watch the professional psychologist, we
often find him working at just this problem. He tests a great number of
individuals to see how they differ, and tries to discover on what factors
their differences depend, how far on heredity, how far on environment. The
"psychologist" in such a place as the children's court {3} is a specialist
whose duty it is to test the delinquent children that are brought before the
court, with the special object of measuring the intelligence of each
individual child and of helping in other ways to understand the child's
peculiar conduct and attitude.
The "psychological examiner" in the Army, during the Great War, had the
same general object in view. It was desirable to measure the intelligence of
each recruit as he entered the service, since military experience had shown
that men of low intelligence made poor soldiers, while those of high
intelligence made the best officers and non-commissioned officers,
provided they also possessed good physique and certain less measureable
mental qualifications, such as courage and leadership.

CHAPTER I

29

Applied psychology.
The Army psychologists, like the court psychologist, were engaged in
applying scientific knowledge to the practical problems of life; and there
are many other applications of psychology, to education, to medicine, to
business and other occupations, as well as to the art of right living.
Scientific knowledge enables you to predict and control. Having devised
scientific tests for intelligence, you can predict of a six-year-old boy who
tests low, that he will not get much good from the regular classes in school;
and thus you are in a position to control the education of this boy for his
own best interests. In the Army, it happened during the earlier part of the
war that some companies or regiments made much slower progress in
training than others; and a whole Division was delayed for months because
of the backwardness of a single regiment. When the psychological tests
were introduced, these slow-learning units were found to contain a
disproportionate number of men of low intelligence. From that time on, it
was possible by aid of the tests to equalize the intelligence of different units
when first formed, and thus insure equal {4} progress in training. This was
a good example of "control".
Most of us are attracted by the practical use of a science, and some have no
patience with any study that does not seem immediately practical. But
really any science, however much it is applied, must remain fundamentally
a pure science; that is, it must seek most of all to know and understand.
Practical scientific knowledge was usually first obtained without any
inkling of how it might be used. The science of electricity is the most
striking example of this. It began as an attempt to understand certain
curious phenomena, which seemed to be nothing but curiosities; yet when
the knowledge of these phenomena had progressed to a certain point,
abundant use was found for it. Much the same is true of psychology, which
began as a pure science and only recently has found ways of applying its
discoveries to practical affairs. So the student beginning the science, though
properly desirous of making practical use of what he learns, should let
himself be governed for the present by the desire to know and understand,
confident that the more scientific (which is to say, the more complete,
systematic and reliable) his knowledge is, the more available it will be for

CHAPTER I

30

practical application.
General psychology.
Our science is not concerned entirely with differences between people, but
asks also in what ways people are alike, and this is indeed its central
problem. How do "we" observe, learn, remember, imagine, think? What
sensations and feelings do we have, what emotions, what instincts, what
natural and acquired impulses to action? How are our natural powers and
impulses developed and organized as we grow up? Psychology is
concerned with the child as well as the adult, and it is even concerned with
the animal. It is concerned with the abnormal as well as the normal human
being. So you will find books and {5} courses on animal psychology, child
psychology, abnormal psychology. Now general psychology--or just plain
"psychology"--has to do with the main laws and principles that hold in all
these special fields.
Psychology as Related to Other Sciences
A good definition of our science would distinguish it from other sciences,
especially from those neighboring sciences with which it is in closest
contact.
Psychology and sociology.
There is no difficulty in framing a good logical distinction here. Sociology
studies the activities of a group of people taken as a whole, while
psychology studies the activities of the individuals. Both might be
interested in the same social act, such as an election, but sociology would
consider this event as a unit, whereas psychology would break it up into the
acts of the several voters. The distinction is clear enough theoretically, but
breaks down often in practice, as sociology would like to know the motives
that swayed individual voters, while psychology on its side is interested to
know what decision was reached by the majority. All the social sciences,
including economics and politics, have a psychological side, since they
evidently are concerned to know the causes that govern human conduct.

CHAPTER I

31

Social psychology studies the individual in his social relations.
Psychology and biology.
Biology, being the science of living creatures, includes psychology, which
studies these creatures on the mental side. The science of life includes the
science of mental life. We may call psychology a part of biology, or we
may call it one of the biological sciences. It has very close contact with
several other branches of biology. Animal psychology overlaps that part of
zoology which studies the behavior of animals. Genetic psychology, as it is
sometimes called, i.e., the study of mental heredity. {6} and development,
dovetails with the general biological science of genetics, so that we find
biologists gathering data on the heredity of feeble-mindedness or of
musical ability, while psychologists discuss the general theory of heredity.
Psychology and physiology.
That one of all the sciences that has the closest contacts with psychology is
human and animal physiology. Broadly defined, physiology is that part of
biology that studies functions or activities; and, so defined, it includes
psychology as part of itself. In practice, psychology devotes itself to desire,
thought, memory, and such "mental functions", while physiology
concentrates its effort upon "bodily functions" like digestion and
circulation. But this is only a rough distinction, which breaks down at many
points.
Where shall we class sensation? Is it "mental" or "bodily"? Both sciences
study it. Physiology is perhaps more apt to go into the detailed study of the
action of the sense organs, and psychology to concern itself with the
classification of sensations and the use made of them for recognizing
objects or for esthetic purposes. But the line between the two sciences is far
from sharp at this point.
Speech, also, lies in both provinces. Physiology has studied the action of
the vocal organs and the location of the brain centers concerned in speech,
while psychology has studied the child's process of learning to speak and

CHAPTER I

32

the relation of speech to thought, and is more apt to be interested in
stuttering, slips of the tongue, and other speech disturbances which are said
to be "mental rather than physical".
It would be hard to mention any activity that is mental without being
physical at the same time. Even thinking, which seems as purely mental as
any, requires brain action; and the brain is just as truly a bodily organ as the
heart or stomach. Its activity is bodily activity and lies properly within the
field of physiology.
{7}
But it would be equally difficult to mention any function that is exclusively
bodily, and not mental at the same time, in some degree. Take digestion for
example: the pleasant anticipation of food will start the digestive juices
flowing, before any food is physically in the stomach; while in anger or
fear digestion comes to a sudden halt. Therefore we find physiologists
interested in these emotions, and psychologists interested in digestion.
We do not find any clean separation between our science and physiology;
but we find, on the whole, that psychology examines what are called
"mental" activities, and that it studies them as the performances of the
whole individual rather than as executed by the several organs.
The Science of Consciousness
Typically, the activities that psychology studies are conscious
performances, while many of those falling to physiology are unconscious.
Thus digestion is mostly unconscious, the heart beat is unconscious except
when disturbed, the action of the liver is entirely unconscious. Why not say,
then, that psychology is the study of conscious activities?
There might be some objection to this definition from the side of
physiology, which studies certain conscious activities itself--speech, for
example, and especially sensation.

CHAPTER I

33

There would be objection also from the side of psychology, which does not
wish to limit itself to conscious action. Take the case of any act that can at
first be done only with close attention, but that becomes easy and automatic
after practice; at first it is conscious, later unconscious, but psychology
would certainly need to follow it from the initial to the final stage, in order
to make a complete study of the practice effect. And then there is the
"unconscious", or the "subconscious mind"--a matter on which
psychologists {8} do not wholly agree among themselves; but all would
agree that the problem of the unconscious was appropriate to psychology.
For all the objections, it remains true that the typical mental process, the
typical matter for psychological study, is conscious. "Unconscious mental
processes" are distinguished from the unconscious activity of such organs
as the liver by being somehow like the conscious mental processes.
It would be correct, then, to limit psychology to the study of conscious
activities and of activities akin to these.
The Science of Behavior
No one has objected so strenuously to defining psychology as the science
of consciousness, and limiting it to consciousness, as the group of animal
psychologists. By energetic work, they had proved that the animal was a
very good subject for psychological study, and had discovered much that
was important regarding instinct and learning in animals. But from the
nature of the case, they could not observe the consciousness of animals;
they could only observe their behavior, that is to say, the motor (and in
some cases glandular) activities of the animals under known conditions.
When then the animal psychologists were warned by the mighty ones in the
science that they must interpret their results in terms of consciousness or
not call themselves psychologists any longer, they rebelled; and some of
the best fighters among them took the offensive, by insisting that human
psychology, no less than animal, was properly a study of behavior, and that
it had been a great mistake ever to define it as the science of consciousness.

CHAPTER I

34

It is a natural assumption that animals are conscious, but after all you
cannot directly observe their consciousness, and you cannot logically
confute those philosophers {9} who have contended that the animal was an
unconscious automaton. Still less can you be sure in detail what is the
animal's sensation or state of mind at any time; to get at that, you would
need a trustworthy report from the animal himself. Each individual must
observe his own consciousness; no one can do it from outside. The
objection of the behaviorist to "consciousness psychology" arises partly
from distrust of this method of inner observation, even on the part of a
human observer.
Indeed, we can hardly define psychology without considering its methods
of observation, since evidently the method of observation limits the facts
observed and so determines the character of the science. Psychology has
two methods of observation.
When a person performs any act, there are, or may be, two sorts of facts to
be observed, the "objective" and the "subjective". The objective facts
consist of movements of the person's body or of any part of it, secretions of
his glands (as flow of saliva or sweat), and external results produced by
these bodily actions--results such as objects moved, path and distance
traversed, hits on a target, marks made on paper, columns of figures added,
vocal or other sounds produced, etc., etc. Such objective facts can be
observed by another person.
The subjective facts can be observed only by the person performing the act.
While another person can observe, better indeed than he can himself, the
motion of his legs in walking, he alone can observe the sensations in the
joints and muscles produced by the leg movement. No one else can observe
his pleased or displeased state of mind, nor whether he is thinking of his
walking or of something quite different. To be sure, his facial expression,
which is an objective fact, may give some clue to his thoughts and feelings,
but "there's no art to read the mind's construction {10} in the face", or at
least no sure art. One may feign sleep or absorption while really attending
to what is going on around. A child may wear an angelic expression while
meditating mischief. To get the subjective facts, we shall have to enlist the

CHAPTER I

35

person himself as our observer.
Introspection
This is observation by an individual of his own conscious action. It is also
called subjective observation. Notice that it is a form of observation, and
not speculation or reasoning from probabilities or from past experience. It
is a direct observation of fact.
One very simple instance of introspection is afforded by the study of
after-images. Look for an instant at the glowing electric bulb, and then turn
your eyes upon a dark background, and observe whether the glowing
filament appears there; this would be the "positive after-image". This
simple type of introspection is used by physiology in its study of the senses,
as well as by psychology; and it gives such precise and regular results that
only the most confirmed behaviorists refuse to admit it as a good method of
observation.
But psychology would like to make introspective observations on the more
complex mental processes as well; and it must be admitted that here
introspection becomes difficult. You cannot hope to make minute
observations on any process that lasts over a very few seconds, for you
must let the process run its natural course unimpeded by your efforts at
observing it, and then turn your "mental eye" instantly back to observe it
retrospectively before it disappears. As a matter of fact, a sensation or
feeling or idea hangs on in consciousness for a few seconds, and can be
observed in this retrospective way. There is no theoretical objection to this
style of introspection, but it is practically difficult and {11} tricky. Try it on
a column of figures: first add the column as usual, then immediately turn
back and review exactly what went through your mind in the process of
adding---what numbers you spoke internally, etc. Try again by
introspecting the process of filling in the blanks in the sentence:
"Botany could not make use of introspection because _____ have probably
no ______ processes."

CHAPTER I

36

At first, you may find it difficult to observe yourself in this way; for the
natural tendency, when you are aiming at a certain result, is to reach the
goal and then shift to something else, rather than to turn back and review
the steps by which you reached the goal. But with practice, you acquire
some skill in introspection.
One difficulty with introspection of the more complex mental processes is
that individuals vary more here than in the simpler processes, so that
different observers, observing each his own processes, will not report the
same facts, and one observer cannot serve as a check upon another so
easily as in the simpler introspection of after-images and other sensations,
or as in the observations made in other sciences. Even well trained
introspectionists are quite at variance when they attempt a minute
description of the thought processes, and it is probable that this is asking
too much of introspection. We mustn't expect it to give microscopic details.
Rough observations, however, it gives with considerable certainty. Who
can doubt, for example, that a well-practised act goes on with very little
consciousness, or that inner, silent speech often accompanies thinking?
And yet we have only introspection to vouch for these facts.
Objective Observation
But to say, as used to be said, that psychology is purely an introspective
science, making use of no other sort of observation, is absurd in the face of
the facts.
{12}
We have animal psychology, where the observation is exclusively objective.
In objective observation, the observer watches something else, and not
himself. In animal psychology, the psychologist, as observer, watches the
animal.
The same is true of child psychology, at least for the first years of
childhood. You could not depend on the introspections of a baby, but you
can learn much by watching his behavior. Abnormal persons, also, are not

CHAPTER I

37

often reliable introspectionists, and the study of abnormal psychology is
mostly carried on by objective methods.
Now how is it with the normal adult human being, the standard subject for
psychology? Does he make all the observations on himself or may he be
objectively observed by the psychologist? The latter, certainly. In fact,
nearly all tests, such as those used in studying differential psychology, are
objective. That is to say that the person tested is given a task to perform,
and his performance is observed in one way or another by the examiner.
The examiner may observe the time occupied by the subject to complete the
task, or the quantity accomplished in a fixed time; or he may measure the
correctness and excellence of the work done, or the difficulty of the task
assigned. One test uses one of these measures, and another uses another;
but they are all objective measures, not depending at all on the
introspection of the subject.
What is true of tests in differential psychology is true of the majority of
experiments in general psychology: the performer is one person, the
observer another, and the observation is objective in character. Suppose,
for example, you are investigating a memory problem; your method may be
to set your subject a lesson to memorize under certain defined conditions,
and see how quickly and well he learns it; then you give him another,
equally difficult lesson to be learned under altered conditions, and observe
whether he {13} does better or worse than before. Thus you discover which
set of conditions is more favorable for memorizing, and thence can infer
something of the way in which memorizing is accomplished. In the whole
experiment you need not have called on your subject for any introspections;
and this is a type of many experiments in which the subject accomplishes a
certain task under known conditions, and his success is objectively
observed and measured.
There is another type of objective psychological observation, directed not
towards the success with which a task is accomplished, but towards the
changes in breathing, heart beat, stomach movements, brain circulation, or
involuntary movements of the hands, eyes, etc., which occur during the
course of various mental processes, as in reading, in emotion, in dreaming

CHAPTER I

38

or waking from sleep.
Now it is not true as a matter of history that either of these types of
objective observation was introduced into psychology by those who call
themselves behaviorists. Not at all; experiments of both sorts have been
common in psychology since it began to be an experimental science. The
first type, the success-measuring experiment, has been much more used
than introspection all along. What the behaviorists have accomplished is
the definitive overthrow of the doctrine, once strongly insisted on by the
"consciousness psychologists", that introspection is the only real method of
observation in psychology; and this is no mean achievement. But we should
be going too far if we followed the behaviorists to the extent of seeking to
exclude introspection altogether, and on principle. There is no sense in
such negative principles. Let us accumulate psychological facts by any
method that will give the facts.
{14}
General Laws of Psychological Investigation.
Either introspective or objective observation can be employed in the
experimental attack on a problem, which consists, as just illustrated in the
case of memory, in controlling the conditions under which a mental
performance occurs, varying the conditions systematically, and noting the
resulting change in the subject's mental process or its outcome.
Psychologists are inclined to regard this as the best line of attack,
whenever the mental activity to be studied can be effectively subjected to
control. Unfortunately, emotion and reasoning are not easily brought under
control, and for this reason psychology has made slower progress in
understanding them than it has made in the fields of sensation and memory,
where good experimental procedure has been developed.
Another general line of attack worthy to be mentioned alongside of the
experimental is the comparative method. You compare the actions of
individuals, classes or species, noting likenesses and differences. You see
what behavior is typical and what exceptional. You establish norms and

CHAPTER I

39

averages, and notice how closely people cluster about the norm and how
far individuals differ from it. You introduce tests of various sorts, by which
to get a more precise measure of the individual's performance. Further, by
the use of what may be called double comparison, or "correlation", you
work out the relationships of various mental (and physical) traits. For
example, when many different species of animals are compared in
intelligence and also in brain weight, the two are found to correspond
fairly well, the more intelligent species having on the whole the heavier
brains; from which we fairly conclude that the size of the brain has
something to do with intelligence. But when we correlate brain weight and
intelligence in human individuals. {15} we find so many exceptions to the
rule (stupid men with large brains and gifted men with brains of only
moderate size) that we are forced to recognize the importance of other
factors, such as the perfection of the microscopic structure of the brain.
Tests and correlations have become so prominent in recent psychological
investigation that this form of the comparative method ranks on a par with
the strict experimental method. A test is an experiment, in a way, and at
least is often based upon an experiment; but the difference between the two
lines of attack is that an experiment typically takes a few subjects into the
laboratory and observes how their mental performances change with
planfully changed conditions; whereas a test goes out and examines a large
number of persons under one fixed set of conditions. An experiment belongs
under what we called "general psychology", and a test under "differential
psychology", since the first outcome of a test is to show how the individual
differs from others in a certain respect. The results may, however, be
utilized in various ways, either for such practical purposes as guiding the
individual's choice of an occupation, or for primarily scientific purposes,
such as examining whether intelligence goes with brain size, whether twins
resemble each other as much mentally as they do physically, whether
intellectual ability and moral goodness tend on the whole to go together, or
not.
The genetic method is another of the general lines of attack on
psychological problems. The object here is to trace the mental development
of the individual, or of the race. It may be to trace the development either of

CHAPTER I

40

mentality in general, or of some particular mental performance. It may be
to trace the child's progress in learning to speak, or to follow the
development of language in the human species, from the most primitive
tongues up to those of the great {16} civilized peoples of to-day. It may be
to trace the improvement of a performance with continued practice.
The value of the genetic method is easily seen. Usually the beginnings of a
function or performance are comparatively simple and easy to observe and
analyze. Also, the process of mental growth is an important matter to study
on its own account.
The pathological method is akin to the genetic, but traces the decay or
demoralization of mental life instead of its growth. It traces the gradual
decline of mental power with advancing age, the losses due to brain
disease, and the maladaptations that appear in insanity and other
disturbances. Here psychology makes close contact with psychiatry which
is the branch of medicine concerned with the insane, etc., and which in fact
has contributed most of the psychological information derived from the
pathological method.
The object of the pathological method is, on the one side, to understand
abnormal forms of mental life, with the practical object of preventing or
curing them, and on the other side, to understand normal mental life the
better. Just as the development of a performance throws light on the
perfected act, so the decay or disturbance of a function often reveals its
inner workings; for we all know that it is when a machine gets out of order
that one begins to see how it ought to work. Failure sheds light on the
conditions of success, maladaptation throws into relief the mental work that
has to be done by the normal individual in order to secure and maintain his
good adaptation. According to the psychiatrists, mental disturbance is
primarily an affair of emotion and desire rather than of intellect; and
consequently they believe that the pathological method is of special
importance in the study of the emotional life.
{17}

CHAPTER I

41

Summary and Attempt at a Definition
Having now made a rapid preliminary survey of the field of psychology,
and of the aims and methods of the workers in this field, we ought to be in a
position to give some sort of a definition.
We conclude, then: psychology is a part of the scientific study of life, being
the science of mental life. Life consisting in process or action, psychology
is the scientific study of mental processes or activities. A mental activity is
typically, though not universally, conscious; and we can roughly designate
as mental those activities of a living creature that are either conscious
themselves or closely akin to those that are conscious. Further, any mental
activity can also be regarded as a physiological activity, in which case it is
analyzed into the action of bodily organs, whereas as "mental" it simply
comes from the organism or individual as a whole. Psychology, in a word,
is the science of the conscious and near-conscious activities of living
individuals.
Psychology is not interested either in dead bodies or in disembodied spirits,
but in living and acting individuals.
One word more, on the psychological point of view. In everyday life we
study our acquaintances and their actions from a personal standpoint. That
is, we evaluate their behavior according as it affects ourselves, or, perhaps,
according as it squares or not with our standards of right and wrong. We
always find something to praise or blame. Now, the psychologist has no
concern with praise and blame, but is a seeker after the facts. He would
know and understand human actions, rather than pass judgment on them.
When, for example, he is introduced into the school or children's court, for
the purpose of examining children that are "problems", his attitude differs
considerably from that of the {18} teacher or officer of the law; for while
they almost inevitably pass judgment on the child in the way of praise or
blame, the psychologist simply tries to understand the child. The young
delinquent brought into the laboratory of the court psychologist quickly
senses the unwonted atmosphere, where he is neither scolded nor exhorted,
but asked to lend his coöperation in an effort to discover the cause why his

CHAPTER I

42

conduct is as it is. Now, this psychological attitude is not necessarily
"better" than the other, but it is distinctly valuable in its place, as seen from
the fact that the young delinquent often does coöperate. He feels that if the
psychologist can find out what is the trouble with him, this may help.
Nothing, indeed, is more probable; it is when we have the facts and trace
out cause and effect that we are in a fair way to do good. Nothing is more
humane than psychology, in the long run, even though the psychologist may
seem unfeeling in the course of his investigation.
To the psychologist, conduct is a matter of cause and effect, of natural law.
His business is to know the laws of that part of nature which we call human
nature, and to use these laws, as fast as discovered, for solving the
problems presented by the human individual or group. For him, even the
most capricious conduct has its causes, even the most inexplicable has its
explanation--if only the cause can be unearthed, which he does not pretend
he can always actually accomplish, since causes in the mental realm are
often very complex. No one can be a psychologist all of the time; no one
can or should always maintain this matter-of-fact attitude towards self and
neighbor. But some experience with the psychological attitude is of
practical value to any one, in giving clearer insight, more toleration, better
control, and even saner standards of living.
{19}
EXERCISES
1. Outline the chapter. A sample outline of the briefer sort is here given:
A. Subject-matter of psychology: mental activities.
(1) A sub-class under vital activities.
(2) Activities of individuals, as distinguished from
(a) Activities of social groups (sociology).

CHAPTER I

(b) Activities of single organs (physiology).
(3) Either conscious, or closely related to conscious activities.
(4) May be activities of human or animal, adult or child, normal or
abnormal individuals.
B. Problems of psychology:
(1) How individuals differ in their mental activities.
(2) How individuals are alike in their mental activities.
(3) Practical applications of either (1) or (2).
C. Methods of psychology:
(1) Methods of observing mental activities.
(a) Introspective, the observing by an individual of his own actions.
(b) Objective, the observation of the behavior of other individuals.
(2) General lines of attack upon psychological problems.
(a) Experimental: vary the conditions and see how the mental activity
changes.
(b) Comparative: test different individuals or classes and see how mental
activity differs, etc.
(c) Genetic: trace mental development.
(d) Pathological: examine mental decay or disturbance.

43

CHAPTER I

44

2. Formulate a psychological question regarding each of the following:
hours of work, genius, crime, baseball.
3. Distinguish introspection from theorizing.
4. What different sorts of objective fact can be observed in psychology?
5. What is the difference between the physiology of hearing and the
psychology of hearing?
6. State two reasons why it would be undesirable to limit psychology to the
introspective study of consciousness.
{20}
7. What is the difference between an experiment and a test, (a) in purpose,
(b) in method?
8. Compare the time it takes you to add twenty one-place numbers,
arranged in a vertical column, and arranged in a horizontal line, (a) Is this
introspective or objective observation? Why so? (b) Is it a test or an
experiment? Why?
9. Write a psychological sketch of some one you know well, taking care to
avoid praise and blame, and to stick to the psychological point of view.
REFERENCES
Some of the good books on the different branches of psychology are the
following:
On animal psychology:
Margaret F. Washburn, The Animal Mind, 2nd edition, 1917.
John B. Watson, Behavior, 1914.

CHAPTER I

On child psychology:
Norsworthy and Whitley, The Psychology of Childhood, 1918.
On abnormal psychology:
A. J. Rosanoff, Manual of Psychiatry, 5th edition, 1920.
On applied psychology:
Hollingworth and Poffenberger, Applied Psychology, 1917.
On individual psychology, parts of:
E. L. Thorndike, Educational Psychology, Briefer Course, 1914,
Daniel Starch, Educational Psychology, 1919.
{21}

45

CHAPTER II

46

CHAPTER II
REACTIONS
REFLEXES AND OTHER ELEMENTARY FORMS OF REACTION, AND
HOW THE NERVES OPERATE IN CARRYING THEM OUT
Having the field of psychology open before us, the next question is, where
to commence operations. Shall we begin with memory, imagination and
reasoning, or with will, character and personality, or with motor activity
and skill, or with feelings and emotions, or with sensation and perceptions?
Probably the higher forms of mental activity seem most attractive, but we
may best leave complicated matters till later, and agree to start with the
simplest sorts of mental performance. Thus we may hope to learn at the
outset certain elementary facts which will later prove of much assistance in
unraveling the more complex processes.
Among the simplest processes are sensations and reflexes, and we might
begin with either. The introspective psychologists usually start with
sensations, because their great object is to describe consciousness, and
they think of sensations as the chief elements of which consciousness is
composed. The behaviorists would prefer to start with reflexes, because
they conceive of behavior as composed of these simple motor reactions.
Without caring to attach ourselves exclusively to either introspectionism or
behaviorism, we may take our cue just here from the behaviorists, because
we shall find the facts of motor reaction more widely useful in our further
studies than the facts of sensation, and because the facts of {22} sensation
fit better into the general scheme of reactions than the facts of reaction fit
into any general scheme based on sensation.
A reaction is a response to a stimulus. The response, in the simplest cases,
is a muscular movement, and is called a "motor response". The stimulus is
any force or agent that, acting upon the individual, arouses a response.

CHAPTER II

47

If I start at a sudden noise, the noise is the stimulus, and the forcible
contraction of my muscles is the response. If my old friend's picture brings
tears to my eyes, the picture (or the light reflected from it) is the stimulus,
and the flow of tears is the response, here a "glandular" instead of a motor
response.
The Reaction Time Experiment
One of the earliest experiments to be introduced into psychology was that
on reaction time, conducted as follows: The experimenter tells his "subject"
(the person whose reaction is to be observed) to be ready to make a certain
movement as promptly as possible on receiving a certain stimulus. The
response prescribed is usually a slight movement of the forefinger, and the
stimulus may be a sound, a flash of light, a touch on the skin, etc. The
subject knows in advance exactly what stimulus is to be given and what
response he has to make, and is given a "Ready!" signal a few seconds
before the stimulus. With so simple a performance, the reaction time is very
short, and delicate apparatus must be employed to measure it. The
"chronoscope" or clock used to measure the reaction time reads to the
hundredth or thousandth of a second, and the time is found to be about .15
sec. in responding to sound or touch, about .18 sec. in responding to light.
Even the simple reaction time varies, however, from one {23} individual to
another, and from one trial to another. Some persons can never bring their
record much below the figures stated, while a few can get the time down to
.10 sec, which is about the limit of human ability. Every one is bound to
vary from trial to trial, at first widely, after practice between narrow limits,
but always by a few hundredths of a second at the least. It is curious to find
the elementary fact of variability of reaction present in such a simple
performance.
What we have been describing is known as the "simple reaction", in
distinction from other experiments that demand more of the subject. In the
"choice reaction", there are two stimuli and the subject may be required to
react to the one with the right hand and to the other with the left; for
example, if a red light appears he must respond with the right hand, but if a

CHAPTER II

48

green light appears, with the left. Here he cannot allow himself to become
keyed up to as high a pitch as in the simple reaction, for if he does he will
make many false reactions. Therefore, the choice reaction time is longer
than the simple reaction time--about a tenth of a second longer.
The "associative reaction" time is longer still. Here the subject must name
any color that is shown, or read any letter that is shown, or respond to the
sight of any number by calling out the next larger number, or respond to
any suitable word by naming its opposite. He cannot be so well prepared as
for the simple, or choice reaction, since he doesn't know exactly what the
stimulus is going to be; also, the brain process is more complex here; so
that the reaction time is longer, about a tenth of a second longer, at the
best, than the choice reaction. It may run up to two or three seconds, even
in fairly simple cases, while if any serious thinking or choosing has to be
done, it runs into many seconds and even into minutes. Here the brain
process is very {24} complex and involves a series of steps before the
required motor response can be made.
These laboratory experiments can be paralleled by many everyday
performances. The runner starting at the pistol shot, after the preparatory
"Ready! Set!", and the motorman applying the brakes at the expected sound
of the bell, are making "simple" reactions. The boxer, dodging to the right
or the left according to the blow aimed at him by his adversary, is making
choice reactions, and this type is very common in all kinds of steering,
handling tools and managing machinery. Reading words, adding numbers,
and a large share of simple mental performances, are essentially
associative reactions. In most cases from ordinary life, the preparation is
less complete than in the laboratory experiments, and the reaction time is
accordingly longer.
Reflex Action
The simple reaction has some points of resemblance with the "reflex",
which, also, is a prompt motor response to a sensory stimulus. A familiar
example is the reflex wink of the eyes in response to anything touching the
eyeball, or in response to an object suddenly approaching the eye. This "lid

CHAPTER II

49

reflex" is quicker than the quickest simple reaction, taking about .05
second. The knee jerk or "patellar reflex", aroused by a blow on the
patellar tendon just below the knee when the knee is bent and the lower leg
hanging freely, is quicker still, taking about .03 second. The reason for this
extreme quickness of the reflex will appear as we proceed. However, not
every reflex is as quick as those mentioned, and some are slower than the
quickest of the simple reactions.
A few other examples of reflexes may be given. The "pupillary reflex" is the
narrowing of the pupil of the eye {25} in response to a bright light suddenly
shining into the eye. The "flexion reflex" is the pulling up of the leg in
response to a pinch, prick or burn on the foot. Coughing and sneezing are
like this in being protective reflexes, and the scratching of the dog belongs
here also.
There are many internal reflexes: movements of the stomach and intestines,
swallowing and hiccoughing, widening and narrowing of the arteries
resulting in flushing and paling of the skin. These are muscular responses;
and there are also glandular reflexes, such as the discharge of saliva from
the salivary glands into the mouth, in response to a tasting substance, the
flow of the gastric juice when food reaches the stomach, the flow of tears
when a cinder gets into the eye. There are also inhibitory reflexes, such as
the momentary stoppage of breathing in response to a dash of cold water.
All in all, a large number of reflexes are to be found.
Most reflexes can be seen to be useful to the organism. A large proportion
of them are protective in one way or another, while others might be called
regulative, in that they adjust the organism to the conditions affecting it.
Now comparing the reflex with the simple reaction, we see first that the
reflex is more deep-seated in the organism, and more essential to its
welfare. The reflex is typically quicker than the simple reaction. The reflex
machinery does not need a "Ready" signal, nor any preparation, but is
always ready for business. (The subject in a simple reaction experiment
would not make the particular finger movement that he makes unless he
had made ready for that movement.) The attachment of a certain response

CHAPTER II

50

to a certain stimulus, rather arbitrary and temporary in the simple
reaction, is inherent and permanent in the reflex. Reflex action is
involuntary and often entirely unconscious.
Reflexes, we said, are permanent. That is because they {26} are native or
inherent in the organism. You can observe them in the new-born child. The
reflex connection between stimulus and response is something the child
brings with him into the world, as distinguished from what he has to
acquire through training and experience. He does acquire, as he grows up,
a tremendous number of habitual responds that become automatic and
almost unconscious, and these "secondary automatic" reactions resemble
reflexes pretty closely. Grasping for your hat when you feel the wind taking
it from your head is an example. These acquired reactions never reach the
extreme speed of the quickest reflexes, but at best may have about the speed
of the simple reaction. Though often useful enough, they are not so
fundamentally necessary as the reflexes. The reflex connection of stimulus
and response is something essential, native, closely knit, and always ready
for action.
The Nerves in Reflex Action
Seeing that the response, in reflex action, is usually made by a muscle or
gland lying at some distance from the sense organ that receives the
stimulus--as, in the case of the flexion reflex, the stimulus is applied to the
skin of the hand (or foot), while the response is made by muscles of the limb
generally--we have to ask what sort of connection exists between the
stimulated organ and the responding organ, and we turn to physiology and
anatomy for our answer. The answer is that the nerves provide the
connection. Strands of nerve extend from the sense organ to the muscle.
But the surprising fact is that the nerves do not run directly from the one to
the other. There is no instance in the human body of a direct connection
between any sense organ and any muscle or gland. The nerve path from
sense organ to muscle always leads through a nerve center. One {27}
nerve, called the sensory nerve, runs from the sense organ to the nerve
center, and another, the motor nerve, runs from the center to the muscle;

CHAPTER II

51

and the only connection between the sense organ and the muscle is this
roundabout path through the nerve center. The path consists of three parts,
sensory nerve, center, and motor nerve, but, taken as a whole, it is called
the reflex arc, both the words, "reflex" and "arc", being suggested by the
indirectness of the connection.
[Illustration: Fig. 1.--The connection from the back of the hand, which is
receiving a stimulus, and the arm muscle which makes the response. The
nerve center is indicated by the dotted lines.]
The nervous system resembles a city telephone system. What passes along
the nerve is akin to the electricity that {28} passes along the telephone
wire; it is called the "nerve current", and is electrical and chemical in
nature.
[Illustration: Fig. 2.--(From Martin's "Human Body.") General view of the
nervous system, showing brain, cord, and nerves.]
All nerve connections, like the great majority of telephone connections, are
effected through the centers, called "centrals" in {29} the case of the
telephone. Telephone A is connected directly with the central, telephone B
likewise, and A and B are indirectly connected, through the central
switchboard. That is the way it is in the nervous system, with "nerve center"
substituted for "central", and "sense organ" and "muscle or gland" for
"telephones A and B."
[Illustration: Fig. 3.--Location of the cord, cerebrum and cerebellum. The
brain stem continues the cord upward into the skull cavity. (Figure text:
cerebrum, cerebellum, cord, tongue)]
The advantage of the centralized system is that it is a system, affording
connections between any part and any other, and unifying the whole
complex organism.
The nerve centers are located in the brain and spinal cord. The brain lies in
the skull and the cord extends from the brain down through a tube in the

CHAPTER II

52

middle of the {30} backbone. Of the brain many parts can be named, but
for the present it is enough to divide it into the "brain stem", a continuation
of the spinal cord up along the base of the skull cavity, and the two great
outgrowths of the brain stem, called "cerebrum" and "cerebellum". The
spinal cord and brain stem contain the lower or reflex centers, while the
cerebellum, and especially the cerebrum, contain the "higher centers". The
lower centers are directly connected by nerves with the sense organs,
glands and muscles, while the higher centers have direct connections with
the lower and only through them with the sense organs, glands and
muscles. In other words, the sensory nerves run into the cord or brain stem,
and the motor nerves run out of these same, while interconnecting nerve
strands extend between the lower centers in the cord and brain stem and
the higher centers in the cerebrum and cerebellum.
The spinal cord contains the reflex centers for the limbs and part of the
trunk, and is connected by sensory and motor nerves with the limbs and
trunk. The brain stem contains the reflex centers for the head and also for
part of the interior of the trunk, including the heart and lungs, and is
connected with them by sensory and motor nerves. The nerve center that
takes part in the flexion reflex of the foot is situated in the lower part of the
cord, that for the similar reflex of the hand lies in the upper part of the
cord, that for breathing lies in the lower or rear part of the brain stem, and
that for winking lies further forward in the brain stem.
Big movements, such as the combined action of all four legs of an animal in
walking, require cord and brain stem to work together, and throw into
relief what is really true even of simpler reflexes, namely that a reflex is a
coordinated movement, in the sense that different muscles cooperate in its
execution.
{31}
Internal Construction of the Nerves and Nerve Centers
We shall understand nerve action better if we know something of the way in
which the nervous system is built. A nerve is not to be thought of as a unit,

CHAPTER II

53

nor are the brain and cord to be thought of as mere masses of some
peculiar substance.
[Illustration: Fig. 4.--A motor nerve cell from the spinal cord, highly
magnified. (Figure text: dendrites, cell body, axon, termination of axon in
muscle)]
A nerve is a bundle of many slender insulated threads, just as a telephone
cable, running along the street, {32} is a bundle of many separate wires
which are the real units of telephonic communication. A nerve center, like
the switchboard in a telephone central, consists of many parts and
connections.
The whole nervous system is essentially composed of neurones. A neurone
is a nerve cell with its branches. Most nerve cells have two kinds of
branches, called the axon and the dendrites.
The nerve cell is a microscopic speck of living matter. Its dendrites are
short tree-like branches, while its axon is often several inches or even feet
in length. The axon is the "slender thread", just spoken of as analogous to
the single telephone wire. A nerve is composed of axons. [Footnote: The
axon is always protected or insulated by a sheath, and axon and sheath,
taken together, are often called a "nerve fiber".] The "white matter" of the
brain and cord is composed of axons. Axons afford the means of
communication between the nerve centers and the muscles and sense
organs, and between one nerve center and another.
The axons which make up the motor nerves are branches of nerve cells
situated in the cord and brain stem; they extend from the reflex center for
any muscle out to and into that muscle and make very close connection with
the muscle substance. A nerve current, starting from the nerve cells in the
reflex center, runs rapidly along the axons to the muscle and arouses it to
activity.
The axons which make up the optic nerve, or nerve of sight, are branches of
nerve cells in the eye, and extend into the brain stem. Light striking the eye

CHAPTER II

54

starts nerve currents, which run along these axons into the brain stem.
Similarly, the axons of the nerve of smell are branches of cells in the nose.
The remainder of the sensory axons are branches of nerve cells that lie in
little bunches close alongside the cord or {33} brain stem. These cells have
no dendrites, but their axon, dividing, reaches in one direction out to a
sense organ and in the other direction into the cord or brain stem, and thus
connects the sense organ with its "lower center".
[Illustration: Fig. 5.--Sensory and motor axons, and their nerve cells. The
arrows indicate the direction of conduction. (Figure text: eye, brain stem,
skin, cord, muscle)]
Where an axon terminates, it broadens out into a thin plate, or breaks up
into a tuft of very fine branches ( the "end-brush"), and by this means
makes close contact with the muscle, the sense organ, or the neurone with
which it connects.
{34}
The Synapse
Now let us consider the mode of connection between one neurone and
another in a nerve center. The axon of one neurone, through its end-brush,
is in close contact with the dendrites of another neurone. There is contact,
but no actual growing-together; the two neurones remain distinct, and this
contact or junction of two neurones is called a "synapse". The synapse,
then, is not a thing, but simply a junction between two neurones.
[Illustration: Fig. 6.--The synapse between the two neurones lies just above
the arrow.]
The junction is good enough so that one of the two neurones, if itself active,
can arouse the other to activity. The end-brush, when a nerve current
reaches it from its own nerve cell, arouses the dendrites of the other
neurone, and thus starts a nerve current running along those dendrites to

CHAPTER II

55

their nerve cell and thence out along its axon.
Now here is a curious and significant fact: the dendrites are receiving
organs, not transmitting; they pick up messages from the end-brushes
across the synapse, but send out no messages to those end-brushes.
Communication across a synapse is always in one direction, from
end-brush to dendrites.
This, then, is the way in which a reflex is carried out, the pupillary reflex,
for example. Light entering the eye starts a nerve current in the axons of
the optic nerve; these axons terminate in the brain stem, where their
end-brushes arouse the dendrites of motor nerve cells, and the axons of
these {35} cells, extending out to the muscle of the pupil, cause it to
contract, and narrow the pupil.
Or again, this is the way in which one nerve center arouses another to
activity. The axons of the cells in the first center (or some of them) extend
out of this center and through the white matter to the second center, where
they terminate, their end-brushes forming synapses with the cells of the
second center. Let the first center be thrown into activity, and immediately,
through this connection, it arouses the second.
[Illustration: Fig. 7.--Different forms of synapse found in the cerebellum,
"a" is one of the large motor cells of the cerebellum (a "Purkinje cell"),
with its dendrites above and its axon below; and "b," "c" and "d" show
three forms of synapse made by other neurones with this Purkinje cell. In
"b," the arrow indicates a "climbing axon," winding about the main limbs
of the Purkinje cell. In "c," the arrow points to a "basket"--an end-brush
enveloping the cell body; while "d" shows what might be called a
"telegraph-wire synapse." Imagine "d" superimposed upon "a": the axon of
"d" rises among the fine dendrites of "a," and then runs horizontally
through them; and there are many, many such axons strung among the
dendrites. Thus the Purkinje cell is stimulated at three points: cell body,
trunks of the dendrites, and twigs of the dendrites.]

CHAPTER II

56

The "gray matter" comprises the nerve centers, lower and higher. It is
made up of nerve cells and their dendrites, of the beginnings of axons
issuing from these cells and of the terminations of incoming axons. The
white matter, as was said before, consists of axons. An axon issues from the
{36} gray matter at one point, traverses the white matter for a longer or
shorter distance, and finally turns into the gray matter at another point,
and thus nerve connection is maintained between these two points.
There are lots of nerve cells, billions of them. That ought to be plenty, and
yet--well, perhaps sometimes they are not well developed, or their synapses
are not close enough to make good connections.
[Illustration: Fig. 8.--A two-neurone reflex arc. (Figure text: stimulus, skin,
sensory axon, bit of the spinal cord, motor axon, muscle)]
Examined under the microscope, the nerve cell is seen to contain, besides
the "nucleus" which is present in every living cell and is essential for
maintaining its vitality and special characteristics, certain peculiar
granules which appear to be stores of fuel to be consumed in the activity of
the cell, and numerous very fine fibrils coursing through the cell and out
into the axon and dendrites.
The reflex arc can now be described more precisely than before. Beginning
in a sense organ, it extends along a sensory axon (really along a team of
axons acting side by side) to its end-brush in a lower center, where it
crosses a synapse and enters the dendrites of a motor neurone and so {37}
reaches the cell body and axon of this neurone, which last extends out to
the muscle (or gland). The simplest reflex arc consists then of a sensory
neurone and a motor neurone, meeting at a synapse in a lower or reflex
center. This would be a two-neurone arc.
[Illustration: Fig. 9.--A three-neurone arc, concerned in respiration. This
also illustrates how one nerve center influences another. (Figure text: white
matter, gray matter, lung, respiratory center in the brain stem, diaphragm,
motor center in cord for the diaphragm)]

CHAPTER II

57

Very often, and possibly always, the reflex arc really consists of three
neurones, a "central" neurone intervening between the sensory and motor
neurones and being connected through synapses with each. The central
neurone plays an important rôle in coördination.
COÖRDINATION
The internal structure of nerve centers helps us see how coördinated
movement is produced. The question is, how {38} several muscles are made
to work together harmoniously, and also how it is possible that a pin prick,
directly affecting just a few sensory axons, causes a big movement of many
muscles. Well, we find the sensory axon, as it enters the cord, sending off a
number of side branches, each of which terminates in an end-brush in
synaptic connection with the dendrites of a motor nerve cell.
[Illustration: Fig. 10.--Coördination brought about by the branching of a
sensory axon. (Figure text: cord, sensory neurone, motor neurone)]
Thus the nerve current from a single sensory neurone is distributed to quite
a number of motor neurones. Where there are central neurones in the arc,
their branching axons aid in distributing the excitation; and so we get a big
movement in response to a minute, though intense stimulus.
But the response is not simply big; it is definite, coordinated, representing
team work on the part of the muscles as distinguished from indiscriminate
mass action. That means selective distribution of the nerve current. The
axons of the sensory and central neurones do not connect with any and
every motor neurone indiscriminately, but link up with selected groups of
motor neurones, and thus harness together teams that will work in definite
ways, producing {39} flexion of a limb in the case of one such team, and
extension in the case of another. Every reflex has its own team of motor
neurones, harnessed together by its outfit of sensory and central neurones.
The same motor neurone may however be harnessed into two or more such
teams, as is seen from the fact that the same muscle may participate in
different reflex movements; and for a similar reason we believe that the
same sensory neurone may be utilized in more than one reflex arc.

CHAPTER II

58

[Illustration: Fig. 11.--Coördination brought about by the branching of the
axon of a central neurone. (Figure text: sensory, central, motor)]
The most distinctive part of any reflex arc is likely to be its central
neurones, which are believed to play the chief part in coördination, and in
determining the peculiarities of any given reflex, such as its speed and
rhythm of action.
Reactions in General
Though the reflex is simple by comparison with voluntary movements, it is
not the simplest animal reaction, for it is coördinated and depends on the
nervous system, while the simplest animals, one-celled animals, have no
nervous system, any more than they have muscles or organs of any {40}
kind. Without possessing separate organs for the different vital functions,
these little creatures do nevertheless take in and digest food, reproduce
their kind, and move. Every animal shows at least two different motor
reactions, a positive or approaching reaction, and a negative or avoiding
reaction.
The general notion of a reaction is that of a response to a stimulus. The
stimulus acts on the organism and the organism acts back. If I am struck by
a wave and rolled over on the beach, that is passive motion and not my
reaction; but if the wave stimulates me to maintain my footing, then I am
active, I respond or react.
Now there is no such thing as wholly passive motion. Did not Newton teach
that "action and reaction are equal"?--and he was thinking of stones and
other inanimate objects. The motion of a stone or ball depends on its own
weight and shape and elasticity as much as on the blow it receives. Even
the stone counts for something in determining its own behavior.
A loaded gun counts for more than a stone, because of the stored energy of
the powder that is set free by the blow of the hammer. The "reaction" of the
gun is greater than the force acting on it, because of this stored energy that
is discharged.

CHAPTER II

59

An animal reaction resembles the discharge of the gun, since there is stored
energy in the animal, consisting in the chemical attraction between food
absorbed and oxygen inspired, and some of this energy is utilized and
converted into motion when the animal reacts. The stimulus, like the trigger
of the gun, simply releases this stored energy.
The organism, animal or human, fully obeys the law of conservation of
energy, all the energy it puts out being accounted for by stored energy it
has taken in in food and oxygen. But at any one time, when the organism
receives {41} a stimulus, the energy that it puts forth in reaction comes
from inside itself.
There is another way in which the organism counts in determining its
reaction. Not only does it supply the energy of the response, but its own
internal arrangements determine how that energy shall be directed. That is
to say, the organism does not blow up indiscriminately, like a charge of
dynamite, but makes some definite movement. This is true even of the
simplest animals, and the more elaborate the internal mechanism of the
animal, the more the animal itself has to do with the kind of response it
shall make to a stimulus. The nervous system of the higher animals, by the
connections it provides between the stimulus and the stores of energy in the
muscles, is of especial importance in determining the nature of the
response.
Stimuli are necessary to arouse the activity of the organism. Without any
stimulus whatever, it seems likely that the animal would relapse into total
inactivity. It should be said, however, that stimuli, such as that of hunger,
may arise within the organism itself. The stimulus may be external or
internal, but some stimulus is necessary in order to release the stored
energy.
In general, then, a reaction consists in the release by a stimulus of some of
the stored energy of an animal, and the direction of that energy by the
animal's own internal mechanism of nerves and muscles (and, we may add,
bones and sinews) into the form of some definite response.

CHAPTER II

60

{42}
EXERCISES
1. Outline of the chapter, being at the same time a "completion test".
Complete the following outline by filling in the blank spaces (usually a
single word will fill the blank, but sometimes two words will be better):
A. Definition: A reaction is a response to a _________. The stimulus
energy stored in the organism, and the ________ has a definite form
determined by the organism's own machinery of ______ and ____.
B. Among very prompt reactions are the reflex and the "simple reaction".
The reflex differs from the "simple reaction" in that:
(1) It usually takes less______.
(2) It requires no_________,
(3) The machinery for it is ______in the organism.
C. The machinery for a reflex consists of:
(1) a______ organ.
(2) a ______nerve.
(3) a nerve ______,
(4) a _______nerve.
(5) a muscle or _______.
D. The sensory and motor nerves consist of ______ which are branches of
____. The cells for the motor nerves lie in the ______, and those for the
sensory nerves lie in two cases in the _______, and in all other cases in

CHAPTER II

61

bunches located close beside the _______or ______,
E. The neurone is the _____ of which the nervous ____ is composed. It
consists of a ______ and of two sorts of branches, the ______ and the
______. Internally, the neurone shows a peculiar structure of ______ and
______.
F. Communication from one neurone to another occurs across a ___ called
the synapse. The _______of an axon here comes into close contact with the
____or with the _______of another neurone. The communication takes
place from the ______of the first neurone to the _________ of the second.
G. The "nerve current" in a reflex therefore runs the following course: from
the sense organ into a ______ axon, along this to its _______ in a nerve,
and across a _______ there into the _______ of a neurone, and thence {43}
out along the _____of this neurone to the ______or _______ that executes
the reflex. This is a two-neurone _______, but often there is a third,
______neurone between the _______ and the ___________.
H. Coördination is effected by the ______ of the axons of the sensory and
______ neurones, by which means the nerve current is ____ to a team of
______ and so to a team of _______.
2. Is the reaction time experiment, as described in the text, an introspective
or an objective experiment?
3. Mention two cases from common life that belong under the "simple
reaction", two that belong under "choice reaction", and two that belong
under the "associative reaction".
4. Arrange the reflexes mentioned in the text under the two heads of
"protective" and "regulative".
5. Draw diagrams of (a) the neurone, (b) a synapse, (c) a reflex arc, and
(d) a coördinated movement. Reduce each drawing to the simplest possible
form, and still retain everything that is essential.

CHAPTER II

62

6. What part of the nervous system lies (a) in the forehead and top of the
head, (b) in the very back of the head, (c) along the base of the skull, (d)
within the backbone, (e) in the arm?
7. Using a watch to take the time, see how long it takes you to name the
letters in a line of print, reading them in reverse order from the end of the
line to the beginning. Compare with this time the time required to respond
to each letter by the letter following it in the alphabet (saying "n" when you
see m, and "t" when you see s, etc.). Which of these two "stunts" is more
like reflex action, and how, nevertheless, does it differ from true reflex
action?
8. The pupillary reflex. Describe the reaction of the pupil of the eye to light
suddenly shining into the eye. This response can best be observed in
another person, but you can observe it in yourself by aid of a hand mirror.
On another person you can also observe the "crossed" pupillary reflex, by
throwing the light into one eye only while you watch the other eye. What
sort of connection do you suppose to exist between the two eyes, making
this crossed reflex possible?
9. The lid reflex, or wink reflex, (a) Bring your hand suddenly close to
another person's eye, and notice the response of the eyelid, (b) See whether
you can get a crossed reflex here, (c) See whether your subject can
voluntarily prevent (inhibit) the lid reflex, (d) See whether the reflex occurs
when he gives the stimulus himself, by moving his own hand suddenly up to
his eye. (e) What other stimulus, besides the visual one that you have been
using, will arouse the same response?
{44}
REFERENCES
C. Judson Herrick, in his Introduction to Neurology, 2nd edition, 1918,
gives a fuller and yet not too detailed account of the neurone in Chapter III,
and of reflex action in Chapter IV.

CHAPTER II

Percy G. Stiles, in his Nervous System and Its Conservation, 1915,
discusses these matters in Chapters II, III and IV.
Ladd and Woodworth's Elements of Physiological Psychology, 1911, has
chapters on these topics.
{45}

63

CHAPTER III

64

CHAPTER III
REACTIONS OF DIFFERENT LEVELS
HOW SENSATIONS, PERCEPTIONS AND THOUGHTS MAY BE
CONSIDERED AS FORMS OF INNER RESPONSE, AND HOW THESE
HIGHER REACTIONS ARE RELATED IN THE NERVOUS SYSTEM TO
THE SIMPLER RESPONSES OF THE REFLEX LEVEL.
Having defined a reaction as an act of the individual aroused by a stimulus,
there is no reason why we should not include a great variety of mental
processes under the general head of reactions. Any mental process is an
activity of the organism, and it is aroused by some stimulus, external or
internal; therefore, it is a reaction.
I hear a noise--now, while the noise, as a physical stimulus, comes to me,
my hearing it is my own act, my sensory reaction to the stimulus. I
recognize the noise as the whistle of a steamboat--this recognition is
clearly my own doing, dependent on my own past experience, and may be
called a perception or perceptive response. The boat's whistle reminds me
of a vacation spent on an island--clearly a memory response. The memory
arouses an agreeable feeling--an affective response, this may be called. In
its turn, this may lead me to imagine how pleasant it would be to spend
another vacation on that island, and to cast about for ways and means to
accomplish this result--here we have imagination and reasoning, aroused
by what preceded just as the sensation was aroused by the physical
stimulus.
In speaking of any mental process as an act of the individual, we do not
mean to imply that he is always conscious {46} of his activity. Sometimes
he feels active, sometimes passive. He feels active in hard muscular work
or hard thinking, while he feels passive in reflex action, in sensation, and in
simply "being reminded" of anything without any effort on his own part.
But he is active in everything he does, and he does everything that depends
on his being alive. Life is activity, and every manifestation of life, such as
reflex action or sensation, is a form of vital activity. The only way to be

CHAPTER III

65

inactive is to be dead.
But vital activity is not "self-activity" in any absolute sense, for it is aroused
by some stimulus. It does not issue from the individual as an isolated unit,
but is his response to a stimulus. That is the sense of calling any mental
process a reaction; it is something the individual does in response to a
stimulus.
To call a sensation a form of reaction means, then, that the sensation is not
something done to the person, nor passively received by him from outside,
but something that he himself does when aroused to this particular form of
activity. What comes from outside and is received by the individual is the
stimulus, and the sensation is what he does in response to the stimulus. It
represents the discharge of internal stored energy in a direction determined
by his own inner mechanism. The sensation depends on his own make-up as
well as on the nature of the stimulus, as is especially obvious when the
sensation is abnormal or peculiar. Take the case of color blindness. The
same stimulus that arouses in most people the sensation of red arouses in
the color-blind individual the sensation of brown. Now what the color-blind
individual receives, the light stimulus, is the same as what others receive,
but he responds differently, i.e., with a different sensation, because his own
sensory apparatus is peculiar.
The main point of this discussion is that all mental {47} phenomena,
whether movements, sensations, emotions, impulses or thoughts, are a
person's acts, but that every act is a response to some present stimulus.
This rather obvious truth has not always seemed obvious. Some theorists, in
emphasizing the spontaneity and "self-activity" of the individual, have
pushed the stimulus away into the background; while others, fixing their
attention on the stimulus, have treated the individual as the passive
recipient of sensation and "experience" generally. Experience, however, is
not received; it is lived, and that means done; only, it is done in response to
stimuli. The concept of reaction covers the ground.
While speaking of sensations and thoughts as belonging under the general
head of reactions, it is well, however, to bear in mind that all mental action

CHAPTER III

66

tends to arouse and terminate in muscular and glandular activity. A
thought or a feeling tends to "express itself" in words or (other) deeds. The
motor response may be delayed, or inhibited altogether, but the tendency is
always in that direction.
Different Sorts of Stimuli
To call all mental processes reactions means that it is always in order to
ask for the stimulus. Typically, the stimulus is an external force or motion,
such as light or sound, striking on a sense organ. There are also the
internal stimuli, consisting of changes occurring within the body and acting
on the sensory nerves that are distributed to the muscles, bones, lungs,
stomach and most of the organs. The sensations of muscular strain and
fatigue, and of hunger and thirst, are aroused by internal stimuli, and many
reflexes are aroused in the same way.
Such internal stimuli as these are like the better known external stimuli in
that they act upon sense organs; but it {48} seems necessary to recognize
another sort of stimuli which act directly on the nerve centers in the brain.
These may be called "central stimuli" and so contrasted with the
"peripheral stimuli" that act on any sense organ, external or internal. To
do this is to take considerable liberty with the plain meaning of "stimulus",
and calls for justification. What is the excuse for thus expanding the notion
of a stimulus?
The excuse is found in the frequent occurrence of mental processes that are
not directly aroused by any peripheral stimulus, though they are plainly
aroused by something else. Anything that arouses a thought or feeling can
properly be called its stimulus. Now it often happens that a thought is
aroused by another, just preceding thought; and it seems quite in order to
call the first thought the stimulus and the second the response. A thought
may arouse an emotion, as when the thought of my enemy, suddenly
occurring to mind, makes me angry; the thought is then the stimulus
arousing this emotional response.

CHAPTER III

67

If hearing you speak of Calcutta makes me think of India, your words are
the stimulus and my thought the response. Well, then, if I thinkof Calcutta
in the course of a train of thought, and next think of India, what else can we
say than that the thought of Calcutta acts as a stimulus to arouse the
thought of India as the response? In a long train of thought, where A
reminds you of B and B of C and C of D, each of these items is, first, a
response to the preceding, and, second, a stimulus to the one following.
There is no special difficulty with the notion of "central stimuli" from the
physiological side. We have simply to think of one nerve center arousing
another by means of the tract of axons connecting the two. Say the auditory
center is aroused by hearing some one mention your friend's name, {49}
and this promptly calls up a mental picture of your friend; here the
auditory center has aroused the visual. What happens in a train of thought
is that first one group of neurones is aroused to activity, and then this
activity, spreading along the axons that extend from this group of neurones
to another, arouses the second group to activity; and so on. The brain
process may often be exceedingly complex, but this simple scheme gives the
gist of it.
The way nerve currents must go shooting around the brain from one center
or group of neurones to another, keeping it up for a long time without
requiring any fresh peripheral stimulus, is remarkable. We have evidence
of this sort of thing in a dream or fit of abstraction. Likely enough, the
series of brain responses would peter out after awhile, in the absence of
any fresh peripheral stimulus, and total inactivity ensue. But response of
one brain center to nerve currents coming from another brain center, and
not directly from any sense organ, must be the rule rather than the
exception, since most of the brain neurones are not directly connected with
any sense organ, but only with other parts of the brain itself. All the
evidence we have would indicate that the brain is not "self-active", but only
responsive; but, once thrown into activity at one point, it may successively
become active at many other points, so that a long series of mental
operations may follow upon a single sensory stimulus.
The Motor Centers, Lower and Higher

CHAPTER III

68

A "center" is a collection of nerve cells, located somewhere in the brain or
cord, which gives off axons running to some other center or out to muscles
or glands, while it also receives axons coming from other centers, or from
sense organs. These incoming axons terminate in end-brushes and so form
synapses with the dendrites of the local {50} nerve cells. The axons
entering any center and terminating there arouse that center to activity,
and this activity, when aroused, is transmitted out along the axons issuing
from that center, and produces results where those axons terminate in their
turn.
[Illustration: Fig. 12.--Side view of the left hemisphere of the brain,
showing the motor and sensory areas (for the olfactory area, see Fig. 18).
The visual area proper, or "visuo-sensory area," lies just around the corner
from the spot marked "Visual," on the middle surface of the hemisphere,
where it adjoins the other hemisphere. (Figure text: frontal lobe, parietal
lobe, central fissure, occipital lobe, motor area, somesthetic area, auditory
area, fissure of Sylvius, temporal lobe, brain stem, cerebellum)]
The lower motor centers, called also reflex centers, are located in the cord
or brain stem, and their nerve cells give rise to the axons that form the
motor nerves and connect with the muscles and glands. A muscle is thrown
into action by nerve currents from its lower motor center.
The principal higher motor center is the "motor area" of the brain, located
in the cortex or external layer of gray matter, in the cerebrum. More
precisely, the motor area is a long, narrow strip of cortex, lying just
forward of what is called the "central fissure" or "fissure of Rolando".
{51}
If you run your finger over the top of the head from one side to the other,
about halfway back from the forehead, the motor areas of the two cerebral
hemispheres will lie close under the path traced by your finger.
[Illustration: Fig. 13.--(After Cajal.) Type of the brain cells that most
directly control muscular movement. (Figure text: Axon. Giant pyramid cell

CHAPTER III

69

from the motor area of the cerebral cortex, magnified 35 diameters. Cell
body of same farther magnified)]
The motor area in the right hemisphere is connected with the left half of the
cord and so with the muscles of the left half of the body; the motor area of
the left hemisphere similarly affects {52} the right half of the body. Within
the motor area are centers for the several limbs and other motor organs.
Thus, at the top, near the middle line of the head (and just about where the
phrenologists located their "bump of veneration"!), is the center for the
legs; next below and to the side is the center for the trunk, next that for the
arm, next that for head movements, and at the bottom, not far from the
ears, is the center for tongue and mouth.
[Illustration: Fig. 14.--The nerve path by which the motor area of the
cortex influences the muscles. The upper part of this path, consisting of
axons issuing from the giant pyramids of the motor area and extending
down into the spinal cord, is the pyramidal tract. The lower part of the path
consists of axons issuing from the motor cells of the cord and extending out
to the muscles. The top of the figure represents a vertical cross-section of
the brain, such as is given, on a larger scale, in Fig. 18. (Figure text:
cortex, cord, muscles)]
The largest nerve cells of all are found in the motor area, and are called,
from their shape, the "giant pyramids". They have large dendrites and very
long axons, which latter, {53} running in a thick bundle down from the
cortex through the brain stem and cord, constitute the "pyramidal tract",
the principal path of communication from the cerebrum to the lower
centers. The motor area of the brain has no direct connection with any
muscle, but acts through the pyramidal tract on the lower centers, which in
turn act on the muscles.
How The Brain Produces Muscular Movements
The motor area is itself aroused to action by nerve currents entering it
through axons coming from other parts of the cortex; and it is by way of the
motor area that any other part of the cortex produces bodily movement.

CHAPTER III

70

There are a few exceptions, as, for example, the movements of the eyes are
produced generally by the "visual area" acting directly on the lower motor
centers for the eye in the brain stem; but, in the main, any motor effect of
brain action is exerted through the motor area. The motor area, as already
mentioned, acts on the lower motor centers in the cord and brain stem, and
these in turn on the muscles; but we must look into this matter a little more
closely.
A lower motor center is a group of motor and central neurones, lying
anywhere in the cord or brain stem, and capable of directly arousing a
certain coördinated muscular movement. One such unit gives flexion of the
leg, another gives extension of the leg, a third gives the rapid alternation of
flexion and extension that we see in the scratching movement of the dog.
Such a motor center can be aroused to activity by a sensory stimulus, and
the resulting movement is then called a reflex.
The lower center can be aroused in quite another way, and that is by nerve
currents coming from the brain, by way of the motor area and the
pyramidal tract. Thus flexion of the leg can occur voluntarily as well as
reflexly. The same {54} muscles, and the same motor neurones, do the job
in either case. In the reflex, the lower center is aroused by a sensory nerve,
and in the voluntary movement by the pyramidal tract.
The story is told of a stranger who was once dangling his legs over the
edge of the station platform at a small backwoods town, when a native
called out to him "Hist!" (hoist), pointing to the ground under the
stranger's feet. He "histed" obediently, which is to say that he voluntarily
threw into play the spinal center for leg flexion; and then, looking down,
saw a rattler coiled just beneath where his feet had been hanging. Now
even if he had spied the rattler first, the resulting flexion, though impulsive
and involuntary, would still have been aroused by way of the motor area
and the pyramidal tract, since the movement would have been a response to
knowledge of what that object was and signified, and knowledge means
action by the cerebral cortex, which we have seen to affect movement
through the medium of the motor area. But if the snake had made the first
move, the same leg movement on the man's part, made now in response to

CHAPTER III

71

the painful sensory stimulus, would have been the flexion reflex.
Facilitation and Inhibition
Not only can the motor area call out essentially the same movements that
are also produced reflexly, but it can prevent or inhibit the execution of a
reflex in spite of the sensory stimulus for the reflex being present, and it can
reinforce or facilitate the action of the sensory stimulus so as to assist in
the production of the reflex. We see excellent examples of cerebral
facilitation and inhibition in the case of the knee jerk. This sharp forward
kick of the foot and lower leg is aroused by a tap on the tendon running in
front {55} of the knee. Cross the knee to be stimulated over the other leg,
and tap the tendon just below the knee cap, and the knee jerk appears. So
purely reflex is this movement that it cannot be duplicated voluntarily; for,
though the foot can of course be voluntarily kicked forward, this voluntary
movement does not have the suddenness and quickness of the true reflex.
For all that, the cerebrum can exert an influence on the knee jerk. Anxious
attention to the knee jerk inhibits it; gritting the teeth or clenching the fist
reinforces it. These are cerebral influences acting by way of the pyramidal
tract upon the spinal center for the reflex.
Thus the cortex controls the reflexes. Other examples of such control are
seen when you prevent for a time the natural regular winking of the eyes by
voluntarily holding them wide open, or when, carrying a hot dish which
you know you must not drop, you check the flexion reflex which would
naturally pull the hand away from the painful stimulus. The young child
learns to control the reflexes of evacuation, and gradually comes to have
control over the breathing movements, so as to hold his breath or breathe
rapidly or deeply at will, and to expire vigorously in order to blow out a
match.
The coughing, sneezing and swallowing reflexes likewise come under
voluntary control. In all such cases, the motor area facilitates or inhibits
the action of the lower centers.
Super-motor Centers in the Cortex

CHAPTER III

72

Another important effect of the motor area upon the lower centers consists
in combining their action so as to produce what we know as skilled
movements. It will be remembered that the lower centers themselves give
coördinated movements, such as flexion or extension of the whole limb; but
still higher coördinations result from cerebral control. {56} When the two
hands, though executing different movements, work together to produce a
definite result, we have coördination controlled by the cortex. Examples of
this are seen in handling an ax or bat, or in playing the piano or violin. A
movement of a single hand, as in writing or buttoning a coat, may also
represent a higher or cortical coördination.
[Illustration: Fig. 15.--(From Starr.) Axons connecting one part of the
cortex with another. The brain is seen from the side, as if in section. At "A"
are shown bundles of comparatively short axons, connecting near-by
portions of the cortex; while "B," "C," and "D" show bundles of longer
axons, connecting distant parts of the cortex with one another. The "Corpus
Callosum" is a great mass of axons extending across from each cerebral
hemisphere to the other, and enabling both hemispheres to work together.
"O. T." and "C. N." are interior masses of gray matter, which can be seen
also in Fig. 18. "O. T." is the thalamus, about which more later.]
Now it appears that the essential work in producing these higher
coördinations of skilled movement is performed not by the motor area, but
by neighboring parts of the cortex, which act on the motor area in much the
same way as the motor area acts on the lower centers. Some of these {57}
skilled-movement centers, or super-motor centers, are located in the cortex
just forward of the motor area, in the adjacent parts of the frontal lobe.
Destruction of the cortex there, through injury or disease, deprives the
individual of some of his skilled movements, though not really paralyzing
him. He can still make simple movements, but not the complex movements
of writing or handling an instrument.
It is a curious fact that the left hemisphere, which exerts control over the
movements of the right hand and right side of the body generally, also
plays the leading part in skilled movements of either hand. This is true, at
least, of right-handed persons; probably in the left-handed the right

CHAPTER III

73

hemisphere dominates.
Motor power may be lost through injury at various points in the nervous
system. Injury to the spinal cord, destroying the lower motor center for the
legs, brings complete paralysis. Injury to the motor area or to the
pyramidal tract does not destroy reflex movement, but cuts off all voluntary
movement and cerebral control. Injury to the "super-motor centers" causes
loss of skilled movement, and produces the condition of "apraxia", in which
the subject, though knowing what he wants to do, and though still able to
move his limbs, simply cannot get the combination for the skilled act that
he has in mind.
Speech Centers
Similar to apraxia is "aphasia" or loss of ability to speak. It bears the same
relation to true paralysis of the speech organs that hand apraxia bears to
paralysis of the hand. Through brain injury it sometimes happens that a
person loses his ability to speak words, though he can still make vocal
sounds. The cases differ in severity, some retaining the ability to speak only
one or two words which {58} from frequent use have become almost reflex
(swear words, sometimes, or "yes" and "no"), while others are able to
pronounce single words, but can no longer put them together fluently into
the customary form of phrases and sentences, and still others can utter
simple sentences, but not any connected speech.
[Illustration: Fig. 16.--Side view of the left hemisphere, showing the
location of the "speech centers." The region marked "Motor" is the motor
speech center, that marked "Auditory" the auditory speech center, and that
marked "Visual" the visual speech center. (Figure text: central fissure,
motor area, auditory area, visual area, fissure of Sylvius, brain stem,
cerebellum)]
In pure cases of motor aphasia, the subject knows the words he wishes to
say, but cannot get them out. The brain injury here lies in the frontal lobe
in the left hemisphere, in right-handed people, just forward of the motor
area for the mouth, tongue and larynx. This "motor speech center" is the

CHAPTER III

74

best-known instance of a super-motor center. It coördinates the elementary
speech movements into the combinations called words; and perhaps there
is no other motor performance so highly skilled as this of speaking. It is
acquired so early in life, and practised so constantly, that {59} we take it
quite as a matter of course, and think of a word as a simple and single
movement, while in fact even a short word, as spoken, is a complex
movement requiring great motor skill.
There is some evidence that the motor speech center extends well forward
into the frontal lobe, and that the front part of it is related to the part
further back as this is to the motor area back of it. That is to say, the back
of the speech center combines the motor units of the motor area into the
skilled movements of speaking a word, while the more forward part of the
speech center combines the word movements into the still more complex
movement of speaking a sentence. It is even possible that the very front part
of the speech center has to do with those still higher combinations of
speech movements that give fluency and real excellence of speaking.
The Auditory Centers
Besides the motor aphasia, just mentioned, there is another type, called
sensory aphasia, or, more precisely, auditory aphasia. In pure auditory
aphasia there is no inability to pronounce words or even to speak fluently,
but there is, first, an inability to "hear words", sometimes called word
deafness, and there is often also an inability to find the right words to
speak, so that the individual so afflicted, while speaking fluently enough
and having sense in mind, misuses his words and utters a perfect jargon.
One old gentleman mystified his friends one morning by declaring that he
must go and "have his umbrella washed", till it was finally discovered that
what he wanted was to have his hair cut.
The cortical area affected in this form of aphasia is located a little further
back on the surface of the brain than {60} the motor speech center, being
close to the auditory area proper. The latter is a small cortical region in
the temporal lobe, connected (through lower centers) with the ear, and is
the only part of the cortex to receive nerve currents from the organ of

CHAPTER III

75

hearing. The auditory area is, indeed, the organ of hearing, or an organ of
hearing, for without it the individual is deaf. He may make a few reflex
responses to loud noises, but, consciously, he does not hear at all; he has
no auditory sensations.
In the immediate neighborhood of the auditory area proper (or of the
"auditory-sensory area", as it may well be called), are portions of the
cortex intimately connected by axons with it, and concerned in what may be
called auditory perceptions, i.e., with recognizing and understanding
sounds. Probably different portions of the cortex near the auditory-sensory
center have to do with different sorts of auditory perception. At least, we
sometimes find individuals who, as a result of injury or disease affecting
this general region, are unable any longer to follow and appreciate music.
They cannot "catch the tune" any longer, though they may have been fine
musicians before this portion of their cortex was destroyed. In other cases,
we find, instead of this music deafness, the word deafness mentioned just
above.
The jargon talk that so often accompanies word deafness reminds us of the
fact that speech is first of all auditory to the child. He understands what is
said to him before he talks himself, and his vocabulary for purposes of
understanding always remains ahead of his speaking vocabulary. It
appears that this precedence of auditory speech over motor remains the
fact throughout life, in most persons, and that the auditory speech center is
the most fundamental of all the speech centers, of which there is one more
not yet mentioned, used in reading.
{61}
[Illustration: Fig. 17.--(From Cajal.) Magnified sections through the
cortex, to show the complexity of its inner structure. One view shows nerve
cells and their dendrites, with only a few axons, while the other shows
axons, outgoing and incoming, and some of their fine branches. Imagine
one view superimposed upon the other, and you get some idea of the
intricate interweaving of axons and dendrites that occurs in the cortex.]

CHAPTER III

76

{62}
The Visual Centers
There is a visual-sensory area in the occipital lobe, at the back of the brain,
that is connected with the eye in the same way as the auditory center is
connected with the ear. Without it, the individual still shows the pupillary
reflex to light, but has no sensations of sight. He is blind.
[Illustration: Fig. 18.--Vertical cross-section through the brain, showing
the cortex on the outside, the thalamus and other interior masses of gray
matter, some of the paths to and from the cortex, and the callosum or
bridge of axons connecting the two cerebral hemispheres. The "Motor
path" is the pyramidal tract, only the beginning of which is shown here, its
further course being indicated in Fig. 14. (Figure text: tactile path, motor
path, auditory path, callosum, thalamus, olfactory area)]
This visual-sensory area occupies only a small portion of the occipital lobe,
and yet practically the whole lobe is concerned with vision. Some portions
of the lobe are concerned in perceiving words in reading, and without them
the individual is "word blind". Other portions are concerned in perceiving
(recognizing, understanding) seen objects, and without them the individual
is "object blind". Other {63} portions are concerned in perceiving color
relations, and still other portions in perceiving spatial relations through the
sense of sight and so knowing where seen objects are and being able to
guide one's movements by sight.
Cortical Centers for the Other Senses
There is an olfactory area in a rather secluded part of the cortex, and this
is related to the sense of smell in the same general way. Probably there is a
similar taste center, but it has not been definitely located. Then there is a
large and important area called the "somesthetic", connected with the body
senses generally, i.e., chiefly with the skin and muscle senses. This area is
located in a narrow strip just back of the central fissure, extending parallel
to the motor area which lies just in front of the fissure, and corresponding

CHAPTER III

77

part for part with it, so that the sensory area for the legs lies just behind the
motor area for the legs, and so on. Destruction of any part of this
somesthetic area brings loss of the sensations from the corresponding part
of the body.
Just behind this direct sensory center for the body, in the parietal lobe, are
portions of the cortex concerned in perceiving facts by aid of the body
senses. Perception of size and shape by the sense of touch, perception of
weight by the muscle sense, perception of degrees of warmth and cold by
the temperature sense, are dependent on the parietal lobe and disappear
when the cortex of this region is destroyed. It appears that there is a sort of
hierarchy of centers here, as in the motor region and probably also in the
visual and auditory regions. Skill in handling objects is partly dependent on
the "feel" of the objects and so is impaired by injuries to the parietal lobe,
as well as by injury to the frontal lobe; and knowing how to manage a
fairly complex situation, as in lighting a fire when you have the various
{64} materials assembled before you, seems also to depend largely on this
part of the cortex.
Lower Sensory Centers
[Illustration: Fig. 19.--Sensory path from the skin of any portion of the
trunk or limbs. The path consists of three neurones, the cell body of the first
lying just outside the spinal cord, that of the second lying in the cord, and
that of the third lying in the thalamus. The last part of this path is the
"Tactile path," shown in Fig. 18. (Figure text: cortex, thalamus, cord,
skin)]
As already indicated, no portion of the cortex, not even the sensory areas,
is directly connected with any sense organ. The sensory axons from the
skin, for example, terminate in the spinal cord, in what may be called the
lowest sensory centers. Here are nerve cells whose axons pass up through
the cord and brain stem to the thalamus or interbrain, where they terminate
in a second sensory center. And cells here send their axons up to the
somesthetic area of the cortex.

CHAPTER III

78

{65}
The thalamus is remarkable as an intermediate center for all the senses,
except smell; but exactly what is accomplished by this big intermediate
sensory center remains rather a mystery, though it certainly appears that
the thalamus has something to do with feeling and emotion.
The Cerebellum
Regarding the cerebellum, there is much knowledge at hand, but it is
difficult to give the gist of it in a few words. On the one hand, the
cerebellum receives a vast number of axons from the lower sensory centers;
while, on the other hand, it certainly has nothing to do with conscious
sensation or perception. Its use seems to be motor. It has much to do with
maintaining the equilibrium of the body, and probably also with
maintaining the steadiness and general efficiency of muscular contraction.
Though it has no known sensory or intellectual functions, it is very closely
connected with the cerebrum, receiving a tremendous bundle of axons from
different parts of the cerebrum, by way of the brain stem. Possibly these are
related to motor activity. The phrenologists taught that the cerebellum was
the center for the sexual instinct, but there is no evidence in favor of this
guess.
Different Levels of Reaction
Let a noise strike the ear and start nerve currents in along the auditory
nerve, passing through the lowest and intermediate centers and reaching
the auditory-sensory area of the cortex. When this last is aroused to
activity, we have a sensation of sound, which is the first conscious reaction
to the external stimulus. Axons running from the auditory-sensory to the
near-by cortex give a perception of some fact indicated by the external
stimulus, and this perception is a {66} second and higher conscious
reaction, which, to be sure, ordinarily occurs so quickly after the first that
introspection cannot distinguish one as first and the other as second; but
the facts of brain injury, already mentioned, enable us to draw the
distinction. The perceived fact may call up a mental image, or a

CHAPTER III

79

recognition of some further fact less directly signified by the noise; these
would be reactions of still higher order. Much of the cortex is apparently
not very directly connected with either the sensory or the motor areas, and
probably is concerned somehow in the recognition of facts that are only
very indirectly indicated by any single sensory stimulus, or with the
planning of actions that only indirectly issue in muscular movement.
On the sensory and intellectual side, the higher reactions follow the lower:
sensation arouses perception and perception thought. On the motor side,
the lower reactions are aroused by the higher. Thus the speech center
arouses the motor centers for the speech organs, combining the action of
these into the speaking of a word; and in a similar way, it seems, the
intention to speak a sentence expressing a certain meaning acts as a
stimulus to call up in order the separate words that make the sentence. A
general plan of action precedes and arouses the particular acts and
muscular movements that execute the plan.
{67}
EXERCISES
1. Outline of the chapter. Fill in sub-topics under each of the following
heads:
A. Mental processes of all kinds are reactions.
B. The stimulus that directly arouses a mental process is often "central".
C. Brain activities of all sorts influence the muscles by way of the motor
area and the lower motor centers.
D. Brain action in skilled movement.
E. Brain action in speech.
F. Brain action in sensation.

CHAPTER III

80

G. Brain action in recognizing seen or heard objects.
H. Relations of reactions of different levels.
2. Define and illustrate these classes of stimuli:
A. Peripheral:
(1) External.
(2) Internal.
B. Central.
3. Show by a diagram how one cortical center arouses another. Compare
the diagram in Fig. 9, p. 37.
4. Facilitation of the patellar reflex or "knee jerk". Let your subject sit with
one leg hanging freely from the knee down. With the edge of your hand
strike the patellar tendon just below the knee cap. (a) Compare the reflex
movement so obtained with a voluntary imitation by the subject. Which is
the quicker and briefer? (b) Apply a fairly strong auditory stimulus (a
sudden noise) a fraction of a second before the tap on the tendon, and see
whether the reflex response is reinforced, (c) Ask the subject to clench his
fists or grit his teeth, and tap the tendon as he does so. Reinforcement? (d)
Where is the reflex center for the patellar reflex, and whence comes the
reinforcing influence?
5. Construct a diagram showing the different centers and connections
involved in making the skilled movement of writing; and consider what loss
of function would result from destruction of each of the centers.
REFERENCES
Herrick's Introduction to Neurology, 1918, Chapter XX, on the "Functions
of the Cerebrum".

CHAPTER III

Stile's Nervous System and Its Conservation, Chapters X, XI and XII.
{68}

81

CHAPTER IV

82

CHAPTER IV
TENDENCIES TO REACTION
HOW MOTIVES INFLUENCE BEHAVIOR, AND HOW THEY FIT INTO A
PSYCHOLOGY WHICH SEEKS TO ANALYZE BEHAVIOR INTO
REACTIONS.
One advantage of basing our psychology on reactions is that it keeps us
"close to the ground", and prevents our discussions from sailing off into the
clouds of picturesque but fanciful interpretation. Psychology is very apt to
degenerate into a game of blowing bubbles, unless we pin ourselves down
to hard-headed ways of thinking. The notion of a reaction is of great value
here, just because it is so hard-headed and concrete. Whenever we have
any human action before us for explanation, we have to ask what the
stimulus is that arouses the individual to activity, and how he responds.
Stimulus-response psychology is solid, and practical as well; for if it can
establish the laws of reaction, so as to predict what response will be made
to a given stimulus, and what stimulus can be depended on to arouse a
desired response, it furnishes the "knowledge that is power". Perhaps no
more suitable motto could be inscribed over the door of a psychological
laboratory than these two words, "Stimulus-Response."
Such a motto would not frighten away the modern introspectionists, for
they, no less than the behaviorists, could find a congenial home in a
stimulus-response laboratory. They would begin by studying sensations,
and, advancing to more complex responses, would observe the conscious
processes entering into the response.
{69}
But, however useful the reaction may be as affording a sound basis for
psychological study, we must not allow it to blind our eyes to any of the
real facts of mental life; and, at first thought, it seems as if motives,
interests and purposes did not fit into the stimulus-response program. Many
hard-headed psychologists have fought shy of such matters, and some have

CHAPTER IV

83

flatly denied them any place in scientific psychology. But let us see.
S ---> R
[Illustration: Fig. 20.--The symbol of stimulus-response psychology. S
means the stimulus, and R the response. The line between is the connection
from stimulus to response.]
Suppose we are looking out on a city street during the noon hour. We see
numbers of people who--lunch over, nothing to do till one o'clock!--are
standing or walking about, looking at anything that chances to catch their
eye, waving their hands to friends across the street, whistling to a stray dog
that comes past, or congregating about an automobile that has broken
down in the crowded thoroughfare. These people are responding to stimuli,
obviously enough, and there is no difficulty in fitting their behavior into the
stimulus-response scheme.
But here comes some one who pays little attention to the sights and sounds
of the street, simply keeping his eyes open enough to avoid colliding with
any one else. He seems in a hurry, and we say of him, "He must have
business on hand; he has to keep an appointment or catch a train". He is
not simply responding to the stimuli that come to him, but has some
purpose of his own that directs his movements.
Here is another who, while not in such a hurry, is not idling by any means,
since he peers closely at the faces of the men, neglecting the women, and
seems to be looking for some one in particular; or, perhaps, he neglects
men and {70} women alike, and looks anxiously at the ground, as if he had
lost something. Some inner motive shuts him off from most of the stimuli of
the street, while making him extra responsive to certain sorts of stimuli.
Purposive Behavior
Now it would be a great mistake to rule these purposeful individuals out of
our psychology. We wish to understand busy people as well as idlers. What
makes a man busy is some inner purpose or motive. He still responds to

CHAPTER IV

84

present stimuli--otherwise he would be in a dream or trance and out of all
touch with what was going on about him--but his actions are in part
controlled by an inner motive.
To complete the foundations of our psychology, then, we need to fit purpose
into the general plan of stimulus and response. At first thought, purpose
seems a misfit here, since-First, a purpose is an inner force, whereas what arouses a response should
be a stimulus, and typically an external stimulus. We do not wish to drop
back into the old "self-activity" psychology, which thought of the individual
as originating his acts from within himself. But if we could show that a
purpose is itself an inner response to some external stimulus, and acts in its
turn as a "central stimulus" to further reactions, this difficulty would
disappear.
Second, while a typical reaction, like the reflex or the simple reaction of the
experiment, is prompt and over with at once, a purpose persists. It keeps
the busy man, in our illustration, hurrying all the way down the street and
around the corner and how much farther we cannot say. It is very different
from a momentary response, or from a stimulus that arouses a momentary
response and nothing more.
Third, what persists, in purposive behavior, is the tendency {71} towards
some end or goal. The purposeful person wants something he has not yet
got, and is striving towards some future result. Whereas a stimulus pushes
him from behind, a goal beckons to him from ahead. This element of action
directed towards some end is absent from the simple response to a stimulus.
In short, we have to find room in our stimulus-response psychology for
action persistently steered in a certain direction by some cause acting from
within the individual. We must find room for internalstates that last for a
time and direct action. In addition, we sometimes, though not always, need
to find room for conscious foreknowledge of the goal towards which the
action is directed.

CHAPTER IV

85

[Illustration: Fig. 21.--The stimulus-response scheme complicated to allow
for the existence of T, an inner motive or tendency, which, aroused by an
external stimulus, itself arouses a motor response. If the reaction-tendency
were linked so firmly to a single response as to arouse that response with
infallible certainty and promptness, then it would be superfluous for
psychology to speak of a tendency at all. But often quite a series of
responses, R1, R2, etc., follows upon a single stimulus, all tending towards
the same end-result, such as escape; and then the notion of a "tendency" is
by no means superfluous.]
"Purpose" is not the best general term to cover all the internal factors that
direct activity, since this word rather implies foresight of the goal, which
demands the intellectual ability to imagine a result not present to the
senses. This highest level of inner control over one's behavior had best be
left for consideration in later chapters on imagination and will. There are
two levels below this. In the middle level, the individual has an inner steer
towards a certain result, though without conscious foresight of that result.
At the lowest level, we can scarcely speak of the individual as being
directed towards any precise goal, but still his {72} internal state is such as
to predispose him for certain reactions and against other reactions.
The lowest level, that of organic states, is typified by fatigue. The middle
level, that of internal steer, is typified by the hunting dog, striving towards
his prey, though not, as far as we know, having any clear idea of the result
at which his actions are aimed. The highest level, that of conscious
purpose, is represented by any one who knows exactly what he wants and
means to get.
No single word in the language stands out clearly as the proper term to
cover all three levels. "Motives" would serve, if we agree at the outset that
a motive is not always clearly conscious or definite, but may be any inner
state or force that drives the individual in a given direction. "Wants" or
"needs" might be substituted for "motives", and would apply better than
"motives" to the lowest of our three levels. "Tendencies", or "tendencies to
reaction", carries about the right meaning, namely that the individual,
because of his internal state, tends towards a certain action. "Determining

CHAPTER IV

86

tendencies" (perhaps better, "directive tendencies") is a term that has been
much used in psychology, with the meaning that the inner tendency
determines or directs behavior. Much used also are "adjustment" and
"mental set", the idea here being to liken the individual to an adjustable
machine which can be set for one or another sort of work. Often
"preparation" or "readiness for action" is the best expression.
Organic States that Influence Behavior
Beginning at the lowest of our three levels, let us observe not even the
simplest animal, but a single muscle. If we give a muscle electric shocks as
stimuli, it responds to each shock by contracting. To a weak stimulus, the
response is weak; {73} to a strong stimulus, strong. But now let us apply a
long series of equal shocks of moderate intensity, one shock every two
seconds. Then we shall get from the muscle what is called a "fatigue
curve", the response growing weaker and weaker, in spite of the continued
equality of the stimuli. How is such a thing possible? Evidently because the
inner condition of the muscle has been altered by its long-continued
activity. The muscle has become fatigued, and physiologists, examining into
the nature of this fatigue, have found the muscle to be poisoned by "fatigue
substances" produced by its own activity. Muscular contraction depends on
the oxidation of fuel, and produces oxidized wastes, of which carbon
dioxide is the best known; and these waste products, being produced in
continued strong activity faster than the blood can carry them away,
accumulate in the muscle and partially poison it. The "organic state" is
here definitely chemical.
[Illustration: Fig. 22.--Fatigue curve of a muscle. The vertical lines record
a series of successive contractions of the muscle, and the height of each
line indicates the force of the contraction. Read from left to right.]
This simple experiment is worth thinking over. Each muscular contraction
is a response to an electric stimulus, but the force of the contraction is
determined in part by the internal state of the muscle. Fatigue is an inner
state of the muscle that persists for a time (till the blood carries away the
wastes), and that predisposes the muscle towards a certain kind of

CHAPTER IV

87

response, namely, weak response. Thus the three characteristics of
purposive behavior that seemed so {74} difficult to fit into the scheme of
stimulus and response are all here in a rudimentary form.
But notice this fact also: the inner condition of muscular fatigue is itself a
response to external stimuli. It is part and parcel of the total muscular
response to a stimulus. The total response includes an internal change of
condition, which, persisting for a time, is a factor in determining how the
muscle shall respond to later stimuli. These facts afford, in a simple form,
the solution of our problem.
Before leaving the muscle, let us take note of one further fact. If you
examine the "fatigue curve" closely, you will see that a perfectly fresh
muscle gains in strength from its first few responses. It is said to "warm up"
through exercise; and the inner nature of this warming up has been found
to consist in a moderate accumulation of the same products which, in
greater accumulation, produce fatigue. The warmed-up condition is then
another instance of an "organic state".
There will be more to say of "organic states" when we come to the
emotions. For the present, do not the facts already cited compel us to
enlarge somewhat the conception of a reaction as we left it in the preceding
chapters? Besides the external response, there is often an internal response
to a stimulus, a changed organic state that persists for a time and has an
influence on behavior. The motor response to a given stimulus is
determined partly by that stimulus, and partly by the organic state left
behind by just preceding stimuli. You cannot predict what response will be
made to a given stimulus, unless you know the organic state present when
the stimulus arrives.
Preparation for Action
At the second level, the inner state that partly governs the response is more
neural than chemical, and is directed {75} specifically towards a certain
end-result. As good an instance as any is afforded by the "simple reaction",
described in an earlier chapter. If the subject in that experiment is to raise

CHAPTER IV

88

his finger promptly from the telegraph key on hearing a given sound, he
must be prepared, for there is no permanent reflex connection between this
particular stimulus and this particular response. You tell your subject to be
ready, whereupon he places his finger on the key, and gets all ready for this
particular stimulus and response. The response is determined as much by
his inner state of readiness as by the stimulus. Indeed, he sometimes gets
too ready, and makes the response before he receives the stimulus.
The preparation in such a case is more specific, less a general organic
state, than in the previous cases of fatigue, etc. It is confined for the most
part to the nervous system and the sense organ and muscles that are to be
used. In an untrained subject, it includes a conscious purpose to make the
finger movement quickly when the sound is heard; but as he becomes used
to the experiment he loses clear consciousness of what he is to do. He is, as
a matter of fact, ready for a specific reaction, but all he is conscious of is a
general readiness. He feels ready for what is coming, but does not have to
keep his mind on it, since the specific neural adjustment has become
automatic with continued use.
Examples of internal states of preparedness might be multiplied
indefinitely, and it may be worth while to consider a few more, and try out
on them the formula that has already been suggested, to the effect that
preparation is an inner adjustment for a specific reaction, set up in
response to some stimulus (like the "Ready!" signal), persisting for a time,
and predisposing the individual to make the specified reaction whenever a
suitable stimulus for it arrives. The preparation may or may not be
conscious. It might be named "orientation" or "steer", with the meaning
that {76} the individual is headed or directed towards a certain end-result.
It is like so setting the rudder of a sailboat that, when a puff of wind
arrives, the boat will respond by turning to the one side.
The runner on the mark, "set" for a quick start, is a perfect picture of
preparedness. Here the onlookers can see the preparation, since the ready
signal has aroused visible muscular response in the shape of a crouching
position. It is not simple crouching, but "crouching to spring." But if the
onlookers imagine themselves to be seeing the whole preparation--if they

CHAPTER IV

89

suppose the preparation to be simply an affair of the muscles--they
overlook the established fact that the muscles are held in action by the
nerve centers, and would relax instantly if the nerve centers should stop
acting. The preparation is neural more than muscular. The neural
apparatus is set to respond to the pistol shot by strong discharge into the
leg muscles.
What the animal psychologists have called the delayed reaction is a very
instructive example of preparation. An animal is placed before a row of
three food boxes, all looking just alike, two of them, however, being locked
while the third is unlocked. Sometimes one is unlocked and sometimes
another, and the one which at any time is unlocked is designated by an
electric bulb lighted above the door. The animal is first trained to go to
whichever box shows the light; he always gets food from the lighted box.
When he has thoroughly learned to respond in this way, the "delayed
reaction" experiment begins. Now the animal is held while the light is
burning, and only released a certain time after the light is out, and the
question is whether, after this delay, he will still follow the signal and go
straight to the right door. It is found that he will do so, provided the delay
is not too long--how long depends on the animal. With rats the delay
cannot exceed 5 seconds, with cats it can reach 18 {77} seconds, with dogs
1 to 3 minutes, with children (in a similar test) it increased from 20 seconds
at the age of fifteen months to 50 seconds at two and a half years, and to 20
minutes or more at the age of five years.
Rats and cats, in this experiment, need to keep their heads or bodies turned
towards the designated box during the interval between the signal and the
release; or else lose their orientation. Some dogs, however, and children
generally, can shift their position and still, through some inner orientation,
react correctly when released. The point of the experiment is that the light
signal puts the animal or child into a state tending towards a certain result,
and that, when that result is not immediately attainable, the state persists
for a time and produces results a little later.
Preparatory Reactions

CHAPTER IV

90

In the delayed reaction, the inner orientation does little during the interval
before the final reaction, except to maintain a readiness for making that
reaction; but often "preparatory reactions" occur before the final reaction
can take place. Suppose you whistle for your dog when he is some distance
off and out of sight. You give one loud whistle and wait. Presently the dog
swings around the corner and dashes up to you. Now, what kept the dog
running towards you after your whistle had ceased and before he caught
sight of you? Evidently he was directed towards the end-result of reaching
you, and this directing tendency governed his movements during the
process. He made many preparatory reactions on the way to his final
reaction of jumping up on you; and these preparatory reactions were, of
course, responses to the particular trees he had to dodge, and the ditches
he had to jump; but they were at the same time governed by the inner state
set up in him by your {78 } whistle. This inner state favored certain
reactions and excluded others that would have occurred if the dog had not
been in a hurry. He passed another dog on the way without so much as
saying, "How d'ye do?" And he responded to a fence by leaping over it,
instead of trotting around through the gate. That is to say, the inner state
set up in him by your whistle facilitated reactions that were preparatory to
the final reaction, and inhibited reactions that were not in that line.
A hunting dog following the trail furnishes another good example of a
directive tendency. Give a bloodhound the scent of a particular man and he
will follow that scent persistently, not turning aside to respond to stimuli
that would otherwise influence him, nor even to follow the scent of another
man. Evidently an inner neural adjustment has been set up in him
predisposing him to respond to a certain stimulus and not to others.
The homing of the carrier pigeon is a good instance of activity directed in
part by an inner adjustment, since, when released at a distance from home,
he is evidently "set" to get back home, and often persists and reaches home
after a very long flight. Or, take the parallel case of the terns, birds which
nest on a little island not far from Key West. Of ten birds taken from their
nests and transported on shipboard out into the middle of the Gulf of
Mexico and released 500 miles from home, eight reappeared at their nests
after intervals varying from four to eight days. How they found their way

CHAPTER IV

91

over the open sea remains a mystery, but one thing is clear: they persisted
in a certain line of activity until a certain end-result was reached, on which
this line of activity ceased.
One characteristic of tendencies that has not previously been mentioned
comes out in this example. When a tendency has been aroused, the animal
(or man) is tense and {79} restless till the goal has been reached, and then
quiets down. The animal may or may not be clearly conscious of the goal,
but he is restless till the goal has been attained, and his restlessness then
ceases. In terms of behavior, what we see is a series of actions which
continues till a certain result has been reached and then gives way to rest.
Introspectively, what we feel (apart from any clear mental picture of the
goal) is a restlessness and tenseness during a series of acts, giving way to
relief and satisfaction when a certain result has been reached.
A hungry or thirsty animal is restless; he seeks food or drink, which means
that he is making a series of preparatory reactions, which continues till
food or drink has been found, and terminates in the end-reaction of eating
or drinking.
What the Preparatory Reactions Accomplish
The behavior of a hungry or thirsty individual is worth some further
attention--for it is the business of psychology to interest itself in the most
commonplace happenings, to wonder about things that usually pass for
matters of course, and, if not to find "sermons in stones", to derive high
instruction from very lowly forms of animal behavior. Now, what is
hunger? Fundamentally an organic state; next, a sensation produced by
this organic state acting on the internal sensory nerves, and through them
arousing in the nerve centers an adjustment or tendency towards a certain
end-reaction, namely, eating. Now, I ask you, if hunger is a stimulus to the
eating movements, why does not the hungry individual eat at once? Why, at
least, does he not go through the motions of eating? You say, because he
has nothing to eat. But he could still make the movements; there is no
physical impossibility in his making chewing and swallowing movements
without the presence of food. {80} Speaking rationally, you perhaps say

CHAPTER IV

92

that he does not make these movements because he sees they would be of no
use without food to chew; but this explanation would scarcely apply to the
lower sorts of animal, and besides, you do not have to check your jaws by
any such rational considerations. They simply do not start to chew except
when food is in the mouth. Well, then, you say, chewing is a response to the
presence of food in the mouth; and taking food into the mouth is a response
to the stimulus of actually present food. The response does not occur unless
the stimulus is present; that is simple.
Not quite so simple, either. Unless one is hungry, the presence of food does
not arouse the feeding reaction; and even food actually present in the
mouth will be spewed out instead of chewed and swallowed, if one is
already satiated. Try to get a baby to take more from his bottle than he
wants! Eating only occurs when one is bothhungry and in the presence of
food. Two conditions must be met: the internal state of hunger and the
external stimulus of food; then, and then only, will the eating reaction take
place.
Hunger, though a tendency to eat, does not arouse the eating movements
while the stimulus of present food is lacking; but, for all that, hunger does
arouse immediate action. It typically arouses the preparatory reactions of
seeking food. Any such reaction is at the same time a response to some
actually present stimulus. Just as the dog coming at your whistle was
responding every instant of his progress to some particular object--leaping
fences, dodging trees--so the dog aroused to action by the pangs of hunger
begins at once to respond to present objects. He does not start to eat them,
because they are not the sort of stimuli that produce this response, but he
responds by dodging them or finding his way by them in his quest for food.
The responses that the hungry dog makes to other objects than {81} food
are preparatory reactions, and these, if successful, put the dog in the
presence of food. That is to say, the preparatory reactions provide the
stimulus that is necessary to arouse the end-reaction. They bring the
individual to the stimulus, or the stimulus to the individual.
[Illustration: Fig. 23.--A stimulus arouses the tendency towards the
end-reaction, R, but (as indicated by the dotted line), T is not by itself

CHAPTER IV

93

sufficient to arouse R; but T can and does arouse P, a preparatory
reaction, and P (or some external result directly produced by P),
coöperating with T, gives rise to R.]
What we can say about the modus operandi of hunger, then, amounts to
this: Hunger is an inner state and adjustment predisposing the individual to
make eating movements in response to the stimulus of present food; in the
absence of food, hunger predisposes to such other responses to various
stimuli as will bring the food stimulus into play, and thus complete the
conditions necessary for the eating reaction. In general, an aroused
reaction-tendency predisposes the individual to make a certain end-reaction
when the proper stimulus for that reaction is present; otherwise, it
predisposes him to respond to other stimuli, which are present, by
preparatory reactions that eventually bring to bear on the individual the
stimulus required to arouse the end-reaction.
Let us apply our formula to one more simple case. While reading in the late
afternoon, I find the daylight growing dim, rise and turn on the electric
light. The stimulus that sets this series of acts going is the dim light; the
first, inner response is a need for light. This need tends, by force of habit, to
make me turn the button, but it does not make me execute this movement in
the air. I only make this movement when the button is in reaching distance.
My first {82} reaction, rising from my chair, is preparatory and brings the
button close enough to act as a stimulus for the hand reaction. The button
within reach is not by itself sufficient to arouse the turning reaction, nor is
the need for light alone sufficient. The two conditions must be present
together, and the preparatory reaction is such that, given the need, the
other condition will be met and the reaction then aroused.
What a Tendency Is, in Terms of Nerve Action
Very little need be added to our neural conception of a reaction in order to
get a satisfactory conception of a tendency to reaction. Principally, we
must add this fact, that a nerve center aroused to activity does not always
discharge instantly and completely into the muscles, or into some other
center, and come to rest itself. It does so, usually, in the case of a reflex,

CHAPTER IV

94

and in other momentary reactions; as when A makes you think of B, and B
at once of C, and so on, each thought occupying you but a moment. But a
tendency means the arousing of a nerve center under conditions which do
not allow that center to discharge at once. The center remains in a
condition of tension; energy is dammed up there, unable to find an outlet.
We have already seen what the conditions are that cause this damming up
of energy. The center that is aroused tends to arouse in turn some lower
motor center, but by itself does not have complete control over that lower
center, since the lower center also requires a certain external stimulus in
order to arouse it to the discharging point. Until the proper external
stimulus arrives to complete the arousal of the lower center, the higher
center cannot discharge its energy.
When there is an "organic state" present, such as hunger or thirst, this may
act as a persistent stimulus to the sensory nerves and through them to the
higher center in {83} question; and then we can readily understand how it
is that the center remains active until the organic state is relieved. But
where there is no such persistent organic stimulus, as there can scarcely be
in the case of the bloodhound or of the man hurrying to a train or seeking
in the crowd for a friend, there we have to suppose that a center, once
aroused to activity and prevented from complete discharge, remains active
by virtue of energy dammed up in itself. There is pretty good physiological
evidence that this sort of thing is a fundamental fact; for there are certain
rhythmical reflexes, like scratching or stepping, that, when started going by
a momentary sensory stimulus, keep it up for a time after the stimulus has
ceased. There seems to be no doubt that a nerve center, once aroused, may
stay aroused for a time.
The "dammed-up energy" here is not to be confused with the "stored
energy" spoken of under the head of reactions. We said, in that connection,
that a stimulus released energy stored in the organism. That, however, was
potential energy, dormant within the organism till aroused; but what we
have here in mind is active or kineticenergy. Stored energy is like that of
coal in the bin; dammed-up energy is like that of steam in the boiler.

CHAPTER IV

95

Dammed-up energy in the nerve centers accounts for the persistence of a
tendency to reaction after the stimulus has ceased. It accounts for the
"delayed reaction" and similar cases. But how shall we account for
preparatory reactions? We have a nerve center in an active state, tending
to discharge into a certain lower motor center, but unable to do so because
a peripheral stimulus is necessary, in addition, in order to arouse this
lower center. Then we find the higher center discharging into other lower
centers, and so giving rise to preparatory reactions. More precisely, what
we find is that the higher center facilitates the response {84} of certain
lower centers to their proper peripheral stimuli, while inhibiting the
response of other lower centers to their appropriate stimuli. This is the
same sort of thing that we observe in all control exerted by a higher center
over a lower. It means that the higher center, besides its main line of
connection with the lower center that will give the end-reaction, has minor
lines of connection with certain other lower centers; some of these centers
it facilitates and others it inhibits. These connections between the main and
the subordinate centers may have been established by inborn nature, or by
previous training, as will be explained in later chapters.
The action of the main center on the subordinate centers concerned in
executing preparatory reactions does not relieve the tension in the main
center. The dammed-up energy stays there till the proper stimulus is
procured for arousing the end-reaction, and then escapes through its main
channel of discharge, and the main center then finally comes to rest.
It may fairly be urged that no violence has been done to the general
conception of a reaction by these additions, and also that with the additions
the notion of a reaction has room for tendencies or inner adjustments. So
that we conclude that stimulus-response psychology is adequate to the job,
and will do justice to all forms of human behavior. It has a place for
sensations, perceptions and thoughts, as we saw in the preceding chapter,
and it has a place also for purposes, desires and motives generally.
Motives

CHAPTER IV

96

In the present chapter, desirous of "keeping close to the ground", we have
said little of distinctively human motives. That will come later. In general, a
motive is a tendency towards a certain end-result or end-reaction, a
tendency which is itself aroused by some stimulus, and which {85} persists
for a time because its end-reaction is not at once made. The end-reaction is
not made at once because it can only be aroused by an appropriate
stimulus, acting in conjunction with the motive. But the motive, persisting
in its inner activity, facilitates reactions to certain stimuli and inhibits
others. The reactions it facilitates are preparatory to the end-reaction, in
that they provide the necessary conditions for that reaction to occur, which
means that they bring to bear on the individual the necessary stimulus
which can arouse the end-reaction. The restlessness that characterizes an
individual driven by an inner motive gives way to rest and satisfaction
when the end-result is reached.
Motives range from the primitive or primal, like hunger, to the very
advanced, such as zeal for a cause. They range from the momentary,
illustrated by the need for more light in reading, to the great permanent
forces of life, like amour propre and esprit de corps. But the permanent
motives are not always active; they sleep and are awakened again by
appropriate stimuli.
In everyday speech we are apt to use the words "motive" and "reason"
interchangeably, as in asking some one what his "motive", or what his
"reason" is for doing so and so. A motive, however, is not necessarily a
reason, nor a reason a motive. A reason is thought-out and conscious,
which a motive need not be. On the other hand, a reason does not become a
motive unless it takes hold of us and arouses a genuine tendency towards
the planned result. You may prove to me, logically, the desirability of a
course of action, but your reasons do not necessarily make me desire it.
You can give a child excellent reasons for studying his lessons, but you
have to stir some real motive of child life in order to get action. In the
highest type of conduct, to be sure, motive and reason pull together, reason
showing the way to the goal at which motive is aimed.
{86}

CHAPTER IV

97

EXERCISES
1. Complete the following outline of the chapter, by filling in main headings
to fit the subordinate headings that are given below:
A. _______
(1) It keeps close to the facts.
(2) It has room for introspective as well as behavior study.
(3) It can be applied practically.
B. _______
(1) A stimulus is typically external, a purpose internal.
(2) A stimulus typically acts for a moment, a purpose persists for some
time.
(3) A stimulus is not directed towards a result, a purpose is so directed.
C. _______
(1) Organic or physiological states that predispose towards certain forms
of behavior.
(2) Inner adjustments towards certain results, without foresight of the
results.
(3) Conscious purpose.
D. _______
(1) They are aroused by stimuli.

CHAPTER IV

98

(2) They persist for a time.
(3) They influence the response to other stimuli.
E. _______
(1) They are neural rather than chemical.
(2) They amount to a preparation or readiness for a certain response.
(3) They persist sometimes for only a few seconds, sometimes for many
minutes at least.
F. _______
(1) A whole series of acts may be set going by a single stimulus.
(2) The series comes to an end when a certain result has been reached.
(3) Each act in the series is a response to some particular stimulus, and yet
would not be aroused by that stimulus except for the active adjustment
towards the end-result. {87} (4) The end-result cannot be reached until a
particular stimulus helps the adjustment to arouse the end-reaction.
(5) The preliminary acts in the series bring the required stimulus that can
give the end-reaction.
G. _____
(1) It may be kept active by a continuing peripheral stimulus.
(2) It may be unable to discharge fully because its main path of discharge
is blocked.
H. _____

CHAPTER IV

99

(1) The main center has minor connections with other centers, in addition
to its main path of discharge.
(2) The persisting activity of the main center influences other centers by
way of facilitation and inhibition.
2. Fill in the blanks in the following paragraph:
"A motive or (1) is a reaction that has not yet come off. It has been (2) by
some stimulus, and it tends towards a certain (3), which however it is
unable of itself to produce, but requires the assistance of another (4) which
is not yet present. The motive gives rise to (5) responses, which, if (6),
finally bring the required (7), and this, combined with the (8) arouses the
(9), and so brings the whole (10) of acts to a close."
3. Cite cases illustrating the importance of preparatory adjustment (a) for
securing prompt reaction, and (b) for securing keen observation.
4. Cite a case where some need or desire gives rise to a series of
preparatory reactions.
5. Cite a case where a need or desire leads to the omission (inhibition) of
acts that would otherwise have occurred.
6. What is meant by the last sentence in the chapter?
7. An experiment on the "delayed reaction". Take two sheets of paper, and
on each write the letters A, B, C, D, E, and F, scattering them irregularly
over the sheet. The task, in general, is now to take aim at one of the letters,
while your hand, holding a pencil, is raised to the side of your head, and
then to close the eyes and strike at the letter aimed for. First aim at A, and
mark the point hit with an a, then the same with B, and so on. With the first
sheet, strike as soon as you have got your aim and closed your eyes; but
with the second sheet, aim, close your eyes, and count ten slowly before
striking, keeping the eyes closed till the stroke has been made. Two sorts of
observation should now be made: first, introspective--record at once what

CHAPTER IV

100

you can of the way you kept your aim during the delay. Second,
objective--measure the errors, and determine how much the delay affected
your aim. What conclusions can you draw from the experiment?
{88}
REFERENCES
On the "delayed reaction", see Walter S. Hunter, "The Delayed Reaction in
Animals and Children", Behavior Monographs, No. 6, 1913. A brief
summary of this work can also be found in Hunter's General Psychology,
1919, pp. 31-33.
On the homing of pigeons and terns, see Watson and Lashley, An Historical
and Experimental Study of Homing, published by the Carnegie Institution
of Washington, 1915.
Interesting examples of changed organic states affecting the behavior of
unicellular animals are given by Jennings in his Behavior of the Lower
Organisms, 1906, and by Margaret F. Washburn in The Animal Mind, 2nd
edition, 1917, pp. 246-257.
{89}

CHAPTER V

101

CHAPTER V
NATIVE AND ACQUIRED TRAITS
SOME RESPONSES ARE PROVIDED BY NATURE, WHILE OTHERS
HAVE TO BE LEARNED BY EXPERIENCE
John Doe is a strongly built man, over six feet high, with big bones and
muscles, erect, vigorous, with plenty of color in his face, dark-haired,
blue-eyed, clean-shaven, with a scar on his cheek, broad face and large
ears. He is easy-going, even-tempered, fond of children and also of women,
rather slangy and even profane in his talk, has a deep, sonorous voice and
can carry the bass in a chorus. He is handy with tools, can drive or repair
an automobile, is a fairly good carpet salesman, but much prefers
out-of-door work. Rather free in spending his money, he has never run into
debt except on one occasion, which turned out badly for him. Which of
these traits of John Doe are native and which are acquired? How far are
his physical, mental and moral characteristics the result of his "original
nature" and how far have they been ingrained in him or imposed upon him
by his training and environment?
The distinction between native and acquired is clearest in the field of
anatomy. Hair color and eye color are evidently native, and so, in the main,
is the size of the body, though undoubtedly growth may be stunted by poor
nutrition, and the individual fail to reach his "natural" height and weight.
On the other hand, scars, tan, and the after-effects of disease or injury, are
evidently acquired. Of movements, the native character of the reflexes has
already been noted, and it is clear that skill in handling tools or {90}
managing the voice is learned, though the individual may have a natural
aptitude for these performances. Temperament and emotional traits we
usually think of as belonging to a man's "nature", though we have to admit
that a naturally cheerful disposition may be soured by ill treatment. On the
other hand, while we reckon habits, such as profanity, or free spending, or
an erect carriage, as belonging with the acquired traits, we know that some
natures are prone to certain habits, and other natures to other habits. Thus
the effects of "nature" and "experience" are almost inextricably interwoven

CHAPTER V

102

in the behavior of an adult person.
Difficult as it certainly is to separate the native from the acquired in human
action, the attempt must be made. We cannot dodge so fundamental a
problem. Scientifically it is important as the starting-point of a genetic
study; we must know where the individual starts in order to understand the
course of his development. Practically it is important because there is
reason to believe that native traits are deeply seated and not easily
eradicated, even though they can be modified and specialized in different
ways. If a habit is not simply a habit, but at the same time a means of
gratifying some natural tendency, then it is almost imperative to find a
substitute gratification in order to eliminate the habit. The individual's
nature also sets limits beyond which he cannot be brought by no matter
how much training and effort; and this is true of mental development as
well as of physical.
The Source of Native Traits
"Native" means a little more than "congenital." A child may be born blind,
having been infected by disease germs shortly before birth; he may be
congenitally an idiot because of head injury during a difficult birth; or his
mentality may have been impaired, during his uterine life, by {91} alcohol
reaching his brain from a drunken mother. Such traits are congenital, but
acquired. Native traits date back to the original constitution of the child,
which was fully determined at the time when his individual life began, nine
months before birth. The "fertilized ovum", formed by the combination of
two cells, one from each of the parents, though microscopic in size and a
simple sphere in shape, somehow contains the determiners for all the native
or inherited traits of the new individual.
It is very mysterious, certainly. This microscopic, featureless creature is
already a human individual, with certain of its future traits--those that we
call "native"--already settled. It is a human being as distinguished from any
other species, it is a white or colored individual, male or female, blonde or
brunette, short or tall, stocky or slender, mentally gifted or deficient,
perhaps a "born" musician or adventurer or leader of men. These and all

CHAPTER V

103

other native traits are already determined and latent within it; and the only
question, regarding such traits, is whether the environment is going to be
such as to enable this young individual to live and mature and unfold what
is latent within it.
Reactions Appearing at Birth Must Be Native
For the first few months of the individual's existence, sheltered as it is
within the mother's body, there is no chance for any acquisition, except of
certain abnormalities such as were alluded to above. What occurs during
this prenatal period is natural development, not learning or any effect of
experience. The traits displayed by the new-born child are, accordingly,
native traits. His breathing, crying, starting at a noise, squirming,
stretching, grasping, sucking and swallowing, and other movements made
from birth on, are to be counted as native reactions, that is to say, as {92}
reactions executed by sensory, muscular and nervous machinery that have
become ready for use by the mere process of natural growth. This is the
first and clearest sign of a native trait, that it shall appear at birth.
Reactions That Cannot Be Learned Must Be Native
But native traits continue to make their appearance as the child's
development proceeds after birth. Inherited anatomical traits, like stature
and build, hair color, beard, and shape of nose, though certainly
determined by native constitution, do not fully make their appearance till
maturity. In fact, what does maturity mean, except that the natural
characteristics have finally reached their complete development? And it is
as true of internal structure as of external, that natural development, far
from being complete at birth, keeps on till maturity. The neurones continue
to grow, and their synapses in the nerve centers to become closer knit, just
by virtue of natural growth; and thus reflex arcs, and other reaction
machinery, one by one reach the ready-to-use stage during the individual's
growing-up, especially during the first few years. With the growth to a
functional condition of their sensori-neuro-muscular mechanisms, mental
and motor reactions that are native, though not present at birth, make their
appearance. The native intelligence of the child gradually unfolds, likewise

CHAPTER V

104

his special native "gifts" and his inherited emotional and impulsive traits.
Of course it is more difficult to make sure that a trait is native when it does
not appear till some time after birth, for the chance of acquiring it by a
process of learning has to be taken into account. If you can so control the
conditions under which the young individual grows as to eliminate the
possibility of learning a certain act, then you can {93} make sure whether
the act is acquired or provided by the native constitution.
Experimental Detection of Native Reactions
Take the question whether birds learn to fly or simply come to fly when
their natural development has gone far enough. The newly hatched bird
cannot fly; its muscles are not strong enough, its wings are not feathered,
and its nerve mechanism for coördinating the wing movements has still
some growth to make before being ready for use. But, under ordinary
conditions, the young bird has some chance to learn flying, by watching the
old birds fly and by trying and gradually getting the motion. The old birds,
after a time, push the young ones from the nest and seem, to our eyes, to be
teaching them to fly. Experiment enables us to decide the question. One of
the earliest experiments in animal psychology was made by Spalding in
1873. He took newly hatched birds from the nest and shut each one
separately in a little box that gave it no chance to stretch its wings or to see
other birds fly. Here he fed and cared for them till the age at which flying
usually begins, and then released them. Off they flew, skilfully managing
wings and tail, swooping around the trees and soon disappearing from
sight. A very successful experiment!--and conclusive. The little birds had
had no chance to learn to fly, yet they flew. Flying must have come to them
in the natural course of growth.
Compare with this experiment another one no less successful, though it
turned out differently. To discover whether the song of the oriole is fixed by
nature or learned by imitation, Scott took some little ones, just hatched, and
brought them up away from older birds. After a time, when growth had
advanced to a certain stage, the birds began {94} to sing. The elementary
notes and rattles characteristic of the oriole made their appearance, but

CHAPTER V

105

were combined in unusual ways, so that the characteristic song of the
oriole did not appear, but a new song. When these birds had grown up in
the laboratory, other new-hatched orioles were brought up with them, and
adopted this new song; so that the laboratory became the center for a new
school of oriole music. The experiment showed that the elements of the
oriole's song were provided by nature, while the combination of these
elements was acquired by imitation.
Probably this last is about the result one would get in the analogous case of
human speech, if a similar experiment should be tried on children. Without
an experiment, we have certain facts that point to a conclusion. The child
uses his vocal organs from birth on; and before he reaches the age when he
imitates the speech of others, he produces various vowels and consonants,
and even puts them together into simple compounds, as "da-da" and
"goo-goo." So far, deaf children do about the same as others, affording
additional evidence that so much of speech is native. To get real speech,
however, further combinations of the speech movements must be made, and
the combinations (words) must have meaning attached to them. These
higher achievements are evidently the result of learning, since the child
uses the words that it hears spoken, and attaches the same meanings to
them as people do about it. The child comes to speak the language of those
about it, without regard to the speech of its ancestors. His "native
language" is therefore acquired, though the elements of vocal utterance are
truly native, and apparently are alike all over the world without regard to
the various languages spoken.
{95}
Is Walking Native or Acquired?
As another example of this same general problem of distinguishing native
from acquired reactions, and of the kind of evidence that throws light on
the problem in the absence of direct experiment, let us consider the child's
walking. Does the child learn to walk, or does it simply come to walk when
its natural development has gone far enough? We think the child learns to
walk because it begins very imperfectly and usually takes several weeks

CHAPTER V

106

before it can be described as really walking of itself. We even think we
teach it to walk, though when we examine our teaching we soon convince
ourselves that we do not know how we walk, and that what we are doing
with the baby is to stimulate and encourage him to walk, protect him from
hurting himself, etc., rather than teaching him as we later teach the child to
write. An experiment to settle the matter might be conducted along the lines
of Spalding's experiment on the young birds. We might prevent the baby
from making any attempt to walk till it had fully reached the normal age for
walking, and then turn it loose and see whether it walked of itself.
Such an experiment has never been made under strict laboratory
conditions; but here is a well-attested case that approximates to an
experiment. A little girl of seven months, a very active child, seemed to
want to get on her feet; but the doctor decided that her feet were too small
to use, and directed that she be put back in long dresses. For four months
she was kept in long dresses, and great care was exercised never to place
her on the floor without them. Then, one day, she was set down without her
dress, and immediately up she got and walked; and from that moment she
was very agile on her feet.
Another rather different case, but tending towards the {96} same
conclusion, is that of a little girl who, in contrast to the preceding, gave her
parents some anxiety because, up to the age of seventeen months, she
wouldn't walk. She would stand holding on, but not trust herself to her feet
alone. One noon her father came in from his work and, removing his cuffs,
laid them on the table. The little girl crept to the table, and raised herself to
a standing position, holding on to the table. She then took a cuff in one
hand, and inserted the other hand into it, thus, for the first time, standing
unsupported. She put on the other cuff in like manner, and then marched
across the room, as proud as you please. For a few days she could walk
only with cuffs, but after that was able to dispense with them. There are a
few other cases, differing in details, but agreeing on the main point, that
the baby walked well on its first trial and went through nothing that could
properly be interpreted as a process of learning.

CHAPTER V

107

It would really be very surprising if the human infant were left to learn
locomotion for himself, while all other animals have this power by nature.
Just because the human infant matures slowly, and learns a vast deal while
maturing, is no reason for overlooking the fact that it does mature, i.e., that
its native powers are gradually growing and reaching the condition of
being ready for use. The most probable conception of "learning to walk," in
the light of the evidence, is about as follows. At the age when the child's
bones and muscles have become strong enough for walking, the nerve
connections for coördinating this complex movement have also just about
reached the stage of development when they are ready for business. The
numerous synapses in the nerve centers that must be traversed by nerve
currents in order to arouse the muscles to this particular act are not, we
may suppose, all ready at the same instant, and it takes some little time for
them to pass from {97} the stage when they will first conduct to the stage
when, having grown more, they conduct perfectly. In other words, the
neural mechanism for walking can function imperfectly before it can
function perfectly. It takes several weeks of growth to pass from the barely
functional condition to the fully functional condition; and it is during these
weeks that the child seems to be learning to walk, while really his exercise
of the partially developed neural mechanisms has no effect except to hasten
their growth to some extent.
Universality as a Criterion of Native Reactions
The fundamental sign or criterion of a native trait, in accordance with what
we have been saying, is that it shall make its appearance when there has
been no chance to acquire it through experience. This is the one perfect
criterion; but unfortunately it cannot always be applied, especially with a
slowly maturing and much-learning species such as the human. We need
other criteria, and one of some value is the criterion of universality.
Consider, for example, the attraction between the sexes, and ask whether
this represents a native tendency, or whether each individual acquires it, as
he does his "native language", by learning from his elders. Before the body
reaches sexual maturity, there has been abundant opportunity for the
quick-learning child to observe sex attraction in older people. Yet it is

CHAPTER V

108

highly improbable that the liking for the other sex which he begins to show
strongly in youth is simply an acquired taste. It is improbable because the
attraction between the sexes is so universal not only among mankind but
among birds and mammals and, indeed, practically throughout the animal
kingdom.
Fighting is a similar case. Not so universal as the sex instinct, it still
appears almost universally among birds and mammals.
{98}
The human individual is an animal, and some of his native traits are
universal among animals. He is a vertebrate, and some of his traits, though
not present in all animals, are universal among vertebrates. He is a
mammal, with mammalian traits; a primate, with primate traits; a man with
human traits; a Chinaman or Indian or European with racial traits;
belongs to a more or less definite stock or breed within the race, and
possesses the traits that are common to members of that stock; and the
same with family traits. The criterion of universality, in the light of these
facts, comes down to this: that when all individuals having the same
descent show a trait in common, that trait is to be regarded as belonging to
their native constitution--unless evidence can be brought forward to the
contrary.
Smoking is universal among many Malay peoples, but we know, as a
historical fact, that it was introduced among them after the discovery of
America, not very many generations ago. Superstition is universal among
some peoples, but we see the superstitious beliefs and practices taught by
the older to the younger generation. Similarly with any specific language. It
may very well be true in such cases that the universal practice appeals to
some native tendency of the people; but the specific practice is handed
down by tradition and not by inheritance.
Some Native Traits Are Far from Being Universal

CHAPTER V

109

Though the universality of a trait creates a certain presumption in favor of
its being native, the opposite is not always true, for a trait may be native
and yet appear in only a fraction of those who have a common descent. Eye
color is certainly native, and yet one of two brothers may have blue eyes
and the other brown. Mental deficiency runs in families, but usually some
members of such families have {99} normal mentality. Genius is almost
certainly a native trait, but it is the reverse of universal. The fact is that,
along with certain traits that appear in all, the native constitution of a stock
provides also for traits that appear only sporadically. Enough has been
said to show that the criterion of universality is one that needs to be
applied with judgment.
Why Acquired Traits Differ from One Individual to Another
Acquired traits are on the whole much less universal, much more
individual, than native traits. They are readjustments of the individual to
environmental conditions; and, as the environment varies, so the
adjustments vary, even when native traits are the same. Acquired traits are
often specializations of the native traits, as any specific language is a
specialization of the vocal utterances that are native and common to all
men, and as the peculiar gait of an individual is a specialization of the
universal walking movement. The gait differs with the environmental
differences to which the individual has adapted himself, and will be
different in one who has been accustomed to walk over rough ground and
in one whose walking has been done on the city streets.
Acquired traits are not independent of native, but are developed on the
basis of the native traits. They are acquired not by laying aside native
tendencies and working out something entirely new, but by acting in
accordance with the native tendencies and making such readjustments as
the environment demands. The acquisition of mental traits is accomplished
by the process of learning, and we shall later have abundant occasion to
examine it in more detail.
{100}

CHAPTER V

110

What Mental Traits Are Native?
For the present, let us simply take a brief survey of the mental field, and
notice what types of reactions are native and what acquired. On the motor
side, the reflexes are native, while habitual and skilled movements are
acquired. On the sensory side, nature provides the use of the sense organs
and the sensations immediately resulting from their stimulation. The baby
responds to touch, warmth, cold, sound and light as soon as it is born, or
practically so, and undoubtedly has the corresponding sensations. In other
words, the rudiments of seeing, hearing, etc., are provided by nature. But
when we say, "I see a dog" we mean more than that we are getting certain
visual sensations; we mean that we see a known object or known sort of
object. This implies recognition of the object, either as an individual thing
or as one of a class; and this the baby can scarcely be supposed to do at
first. He sees the dog to the extent that he responds by visual sensations to
the light coming from the dog, but not to the extent that he recognizes the
dog as a dog. In short, the meanings of sensations are acquired, though the
sensations themselves are native.
Things come to be known by use of the senses, and when thus known are
not only recognized when present, but also remembered and thought of
when they are not present to the senses. Such memories and items of
knowledge, dependent as they are on experience, are to be reckoned among
the acquired reactions. Ideas or conceptions of things also belong here.
Of the emotions, some are called "primary" or native--anger and fear are
examples--while others result from the compounding of these primary
emotions and are therefore acquired. As people and things come to be
known, emotional reactions become attached to them, and give what {101}
are often named "sentiments", such as love for this person, contempt for
that one, family pride, patriotism. These sentiments, bound up as they are
with knowledge and ideas, are certainly acquired.
Closely akin to the primary emotions are the native impulses, as the
impulse to eat, to cry, to laugh, to escape from danger, to resist external
compulsion and to overcome obstacles. The native impulses are the raw

CHAPTER V

111

material out of which the numerous acquired desires of child and adult are
formed. One sort of native impulse is the impulse to notice or pay attention
to certain sorts of stimuli. These native interests of the child give birth to
the various specialized interests of the adult. The baby's attention to a
bright light represents a native interest; the older child's fixing his eyes on
a dark brown piece of chocolate represents an acquired interest which has
developed in a way that is easy to understand.
Finally, we must count among the native traits of the individual his
inherited aptitudes for certain kinds of work. One child shows a natural
aptitude for music, another for acting, another for mathematics, another for
mechanical things, another for language, and so on. As any of these
"natural gifts" is present in some degree in nearly all members of the
human family, and not to anything like the same degree in animals, they are
the characteristically human traits. It is on the basis of such native
aptitudes that each individual proceeds, through the processes of learning,
to build up his various acquired abilities, such as the ability to sing, to
speak a certain language, to add, to work with tools, to perform athletic
feats, and to take part in social activities of various sorts.
Our next task will be to examine more closely the native equipment of man,
and after that to take up the process of learning, which is the way reactions
are acquired. First the native, then the acquired. The acquired is based
upon {102} the native. Acquired reactions are indeed so numerous that we
cannot attempt even to list them all, let alone examine each one separately;
but we can at least study the way in which they are acquired. Native
reactions are much less numerous, so that the student may hope to obtain a
fairly comprehensive survey of this field, though, of course, without much
detail.
The general plan of this book, then, is as follows. Up to this point, it has
been providing a stock of methods and general conceptions to serve as
tools in psychological study: consciousness and behavior, the introspective
and objective methods, reactions and tendencies to reaction, native and
acquired, and the part played by the nervous system. Next comes a survey
of reactions provided by the native constitution, and after that a study of

CHAPTER V

112

the process of learning or acquiring reactions. Finally, there are several
chapters devoted to such topics as imagination, reasoning and will, which
are ways in which the individual utilizes his whole equipment, native and
acquired, in meeting the exigencies of life.
{103}
EXERCISES
1. Outline the chapter.
2. When does the individual come into existence as an individual? When
does he begin to acquire traits? How long does he continue to unfold his
native traits, and how long does he continue to acquire traits?
3. Which of the following elements of spoken language are native, and
which acquired?
(a) Production of voice by the vocal cords and air blast from the lungs.
(b) Varying the voice in loudness.
(c) Varying the voice in pitch.
(d) Production of vowels by different positions of the mouth.
(e) Production of consonants by lip and tongue movements.
(f) Combination of vowels and consonants into words.
(g) Combination of words into idioms and grammatical sentences,
(h) Attachment of meanings to words.
(i) Sweet-toned voice.

CHAPTER V

113

(j) Nasal twang.
(k) Fluency in speaking.
4. In each of the following reactions, decide whether the connection of
stimulus and response is probably native or acquired:
Stimulus Response
(a) a sudden noise starting
(b) a bright light blinking
(c) a bright light shading your eyes
(d) cold putting on coat
(e) cold shivering
(f) sight of a ball reaching for it
(g) ball in the hand throwing it
(h) slipping righting yourself
(i) row of objects counting them
(j) insulting language anger
REFERENCES
Edward L. Thorndike, in Chapter I of his Educational Psychology, Briefer
Course, 1914, gives a general survey of the native factors in mental life and
behavior.
{104}

CHAPTER V

114

Hollingworth and Poffenberger, in their Applied Psychology, 1917, devote
Chapters II and III to the matter of mental heredity.
Norsworthy and Whitley, in their Psychology of Childhood, devote

Chapters

115

Chapters
I and II to "original nature".
C. B. Davenport, in his Heredity and Eugenics, presents evidence of the
importance of heredity in determining mental and moral traits.
Yerkes and Bloomfleld, in a short article in the Psychological Bulletin for
1910, Vol. 7, pp. 253-263, under the title, "Do Kittens Instinctively Kill
Mice?", furnish a good illustration of the method employed in
distinguishing native from acquired reactions.
{105}

CHAPTER VI

116

CHAPTER VI
INSTINCT
CONDUCT AS DETERMINED BY NATIVE REACTION-TENDENCIES
Instinct is native behavior. It is contrasted with habit, knowledge, or
anything in the way of learned reactions. When the mother wasp gathers a
store of food suitable for young wasps, lays eggs beside the food and covers
the whole with a wall of mud, we know that her behavior is instinctive
because she has had no possible chance to learn from older wasps. She has
never seen a wasp's nest made, for when the last preceding crop of nests
was being made she was herself an unhatched egg. Therefore, she cannot
possibly know the use of the nest with its eggs and store of food. She has no
"reason" for building the nest, no ulterior purpose, but is impelled to build
the nest, simply and solely for the sake of doing just that thing. Thus
instinct is contrasted with calculated or reasoned action as well as with
learned action. Calculated action is based on knowledge of cause and
effect, and this knowledge is acquired by the individual in the course of his
experience; but instinct is not based on the individual's experience, but only
on his native constitution.
The case of the baby eating is exactly the same as that of the wasp. The
baby has not learned to eat, he knows nothing of the use of food and
therefore has no ulterior purpose in eating, he does not reason about the
matter, but eats simply because hunger is a native impulse to eat. {106}
Eating is an end in itself to a hungry baby, and not a means to some further
end; and that is what eating continues to be even to the hungry adult,
however much he may learn about the use of food in maintaining life. From
a broad philosophical point of view, instinct may be seen to work towards
some great end, such as the preservation of the individual or the
propagation of the race, but from the individual's own point of view, it is
directed simply towards the performance of some particular act, or the
accomplishment of some particular result.

CHAPTER VI

117

If instinct, as a collective term, means native behavior, "an instinct" is a
unit of such behavior. Or, it is some unit of native organization that equips
the individual to behave in a certain way. Different species of animals have
different instincts, i.e., they are differently organized by nature. The
differences of organization lie partly in the equipment of sense organs,
partly in the equipment of motor organs, and partly in the nerves and nerve
centers that, being themselves aroused by way of the sense organs, in turn
arouse the motor organs.
The dependence of instinct on sensory equipment becomes clear when we
think of animals possessing senses that human beings lack. The instinct of
dogs to follow the scent depends on their keen sense of smell. Bees have
something akin to a sense of taste in their feet, and follow their own trails
by tasting them. Fishes have special sense organs along their sides that are
stimulated by water currents, and it is in response to this stimulus that the
fish instinctively keeps his head turned upstream.
The dependence of instinct on motor equipment is still more obvious. The
flying instinct of birds depends on the possession of wings, and the
swimming instinct of the seal depends on the fact that his limbs have the
peculiar form of flippers. The firefly instinctively makes flashes of light,
{107} and the electric eel instinctively discharges his electric organ and
gives his enemy a shock.
But the core of an instinct is to be sought in the nerve centers, since it is
there that the coördination of the muscles is accomplished. A wing or
flipper would be of no use unless its muscles were excited to action by the
nerve centers, and it would be of very little use unless the nerve centers
were so organized as to arouse the muscles in a certain combination, and
with a certain force and rhythm. In terms of the nervous system, an instinct
is the activity of a team of neurones so organized, and so connected with
muscles and sense organs, as to arouse certain motor reactions in response
to certain sensory stimuli.
The Difference Between an Instinct and a Reflex

CHAPTER VI

118

What we have said regarding instinct thus far could equally well be said of
reflex action. A reflex is a native reaction, and it is taken care of by a team
of neurones in the way just stated. We might speak of a reflex as
"instinctive", using this adjective as equivalent to "native"; but we should
shrink for some reason from speaking of the pupillary reflex to light as an
instinct, or of the "knee jerk instinct", or the "swallowing instinct", or the
"flexion instinct". There is some difference between the typical reflex and
the typical instinct, though it is not very obvious what the difference is.
The typical reflex is a much simpler act than the typical instinct, but it is
impossible to separate the two classes on this basis. At the best, this would
be a difference of degree and not of kind. Among reflexes, some are simpler
than others, but even the simplest is compound in the sense of being a
coördinated movement. The knee jerk is simpler than the flexion reflex, and
this is simpler than the scratch {108} reflex, which consists of a rapid
alternation of flexion and extension by one leg, while the other is stiffly
extended and supports the trunk. Coughing, which would be called a reflex
rather than an instinct, consists of a similar alternation of inspiration and
forced expiration, and swallowing consists of a series of tongue, throat and
gullet movements. These compound reflexes show that we cannot accept the
simple definition that is sometimes given for an instinct, that it is a
compound of reflexes. Such a definition would place coughing and
swallowing among the instincts, and so do violence to the ordinary use of
the word. In point of complexity, we find a graded series ranging from the
pupillary reflex at one extreme to the nesting or mating instinct at the
other, and no sharp line can be drawn on this score between the reflexes
and the instincts.
Another distinction has been attempted on the basis of consciousness.
Typically, it may be said, a reflex works automatically and unconsciously,
while an instinct is consciously impulsive. The reflex, accordingly, would
be an unconscious reaction, the instinct a conscious reaction. But this
distinction also breaks down on examination of cases. The pupillary reflex,
to be sure, is entirely unconscious. But the flexion reflex is a little different.
When unimpeded, it occurs so promptly that we are scarcely aware of the
painful stimulus before the reaction has occurred. But let the reaction be

CHAPTER VI

119

hindered--either voluntarily or, for instance, by the foot being seized and
held--and a strong conscious impulse is felt to pull the leg away; so that
here the flexion reflex would belong among the instincts, according to the
proposed distinction.
Similar remarks would apply equally well to coughing, since a strong
impulse to cough is felt if the coughing movement is checked. Sneezing, a
protective reflex, is usually a slow reaction, giving time for a conscious
impulse to {109} sneeze before the reaction takes place. The same is true of
scratching and of swallowing, and of a number of other reflexes. In short, it
is impossible to draw a satisfactory line between reflexes and instincts on
the basis of conscious impulse.
These cases point the way, however, to what is probably the best
distinction. It was when the flexion reflex was delayed that it began to look
like an instinct, and it was because sneezing was a slow response that it
had something of the character of an instinct. Typically, a reflex is a
prompt reaction. It occurs at once, on the occurrence of its stimulus, and is
done with. What is characteristic of the instinct, on the contrary, is the
persisting "tendency", set up by a given stimulus, and directed towards a
result which cannot be instantly accomplished.
An Instinct Is a Native Reaction-Tendency
We would propose, then, to consider an instinct as an inner adjustment, or
tendency to reaction. It is this, rather than just a reaction. When a stimulus
promptly arouses a reaction, and that ends the matter, we speak of reflex
action--provided, of course, the connection between stimulus and response
is native. But when a stimulus sets up a tendency to a reaction that cannot
be immediately executed, or towards an end-result which cannot
immediately be reached, and when the tendency so aroused persists for a
time in activity, and gives rise to preparatory reactions, then we speak of
instinct.
The "broody" hen makes a good picture of instinct. When in this condition
she responds to a nestful of eggs, as she does not at other times, by sitting

CHAPTER VI

120

persistently on them and keeping them covered. She is in a certain "organic
state" that facilitates this response. In the absence {110} of any nestful of
eggs, she shows a peculiar restless behavior that indicates to one who
knows hens that this one "wants to set." The tendency that has been
awakened in her cannot be satisfied by any momentary act, but persists and
governs her actions for a considerable period.
The nesting instinct of birds affords a still more complete example. The
end-result here, the finished nest, cannot be instantly had, and the pair of
birds keep on gathering materials and putting them together until this
end-result is present before their eyes. It is not necessary to suppose that
the birds have any plan or mental image of what the nest is to be like;
probably not. But their state, in the nest-building season, is such that they
are impelled to build, and the tendency is not quieted till the completed nest
is there.
The mating instinct, in unsophisticated members of the human species, is
another perfect example. So is the hunting instinct in a dog; when this
instinct is aroused, the animal makes a lot of movements of various sorts,
responses to various particular stimuli, but evidently these movements are
not sufficient to quiet the tendency, for they continue till the prey is
captured. The behavior of a gregarious animal when separated from his
fellows shows the same sort of thing. Take a young chick out of the brood
and fence it away from the rest. It "peeps" and runs about, attacking the
fence at different points; but such reactions evidently do not bring
satisfaction, for it varies them until, if a way out of the inclosure has been
left, it reaches the other chicks, when this series of acts terminates, and
gives way to something quite different, such as pecking for food.
The persisting tendency does not produce the series of movements all by
itself, but, as was explained in speaking of tendencies in general,
coöperates with sensory stimuli in producing them. Clearly enough, the
nest-building bird, {111} picking up a twig, is reacting to that twig. He
does not peck at random, as if driven by a mere blind impulsion to peck. He
reacts to twigs, to the crotch in the tree, to the half-built nest. Only, he
would not react to these stimuli unless the nesting fit were on him. The

CHAPTER VI

121

nest-building tendency favors response to certain stimuli, and not to others;
it facilitates certain reactions and inhibits others. It facilitates reactions
that are preparatory to the end-result, and inhibits others.
Fully and Partially Organized Instincts
Insects afford the best examples of very highly organized instincts. Their
behavior is extremely regular and predictable, their progress towards the
end-result of an instinct remarkably straightforward and sure. They make
few mistakes, and do not have to potter around. By contrast, the instincts of
mammals are rather loosely organized. Mammals are more plastic, more
adaptable, and at the same time less sure; and this is notably true of man. It
would be a mistake to suppose that man has few instinctive tendencies;
perhaps he has more than any other creature. But his instinctive behavior
has not the hard-and-fast, ready-made character that we see in the insects.
Man is by all odds the most pottering, hem-and-hawing of animals. Instinct
does not lead him straight to his goal, but makes him seek this way and that
till he finds it. His powers of observation, memory and thought are drawn
into the game, and thus instinct in man is complicated and partly concealed
by learning and reasoning.
For example, when an insect needs a nest, it proceeds in orderly fashion to
construct a nest of the pattern instinctive to that species of insect; but when
a man needs a home, he goes about it in a variable, try-and-try-again {112}
manner, scheming, experimenting, getting suggestions from other people,
and finally producing--a dugout, a tree house; a wigwam, a cliff
dwelling--something that differs altogether from many other human
habitations, except in the fact that it is a habitation and thus satisfies a
need which is undoubtedly as instinctive in man as in the insect.
A fully organized instinct is one where the necessary preparatory reactions
are linked up closely with the main reaction-tendency, so that, once the
main tendency is aroused to activity, the preparatory reactions follow with
great sureness. The main team of neurones is closely connected with the
subordinate teams that give the preparatory reactions; and these
connections do not have to be acquired by experience and training, but are

CHAPTER VI

122

well formed by native growth. Just the right preparatory reactions are
linked to the main tendency, so that the whole series of acts is run off with
great regularity.
In a loosely organized instinct, the main tendency is not firmly linked with
any specific preparatory reactions, but is loosely linked with a great many
preparatory reactions, and so gives quite variable behavior, which,
however, leads on the whole towards the main goal.
While a creature under the spell of a fully organized instinct is busy, one
driven by a loosely organized instinct may be better described as restless.
He tries this thing and that, and goes through the kind of behavior that is
called "trial and error". A closely knit instinct, then, gives a perfectly
definite series of preparatory reactions, while a loosely organized instinct
gives trial and error behavior. We shall see later how trial and error
furnishes a starting point for learning, and how, in an animal that can
learn, those among the trial-and-error reactions that are actually
preparatory to the end-result become firmly attached to the main tendency,
so that what was by native constitution a loosely {113} organized instinct
may become, through the individual's experience, a closely organized habit.
If a man has occasion to build himself many homes, he comes, after a
while, to build almost as uniformly and surely as an insect.
Instincts Are Not Ancestral Habits
The theory of inheritance of acquired traits has gone by the board;
biologists no longer accept it. Such traits as an individual's tanned skin
acquired by living in the tropics, horny hands acquired by hard labor,
immunity to measles acquired by having measles, big muscular
development acquired by gymnastics, are not transmitted by heredity to the
children of the individual who acquired these traits.
Nor are acquired behavior traits transmitted by heredity. Learned
reactions are not so transmitted, knowledge is not, acquired skill is not.
Learn to cook, to typewrite, or pilot an airplane as perfectly as possible,
and your child will still have to learn all over again. You may make your

CHAPTER VI

123

experience valuable to him by teaching him, but not in the way of heredity.
Language affords a good test of this matter. A child's parents, and all his
ancestors for many generations, may have spoken the same language, but
that does not relieve the child of the necessity of learning that language. He
does not inherit the language habits of his ancestors. He has no native
tendency to say "dog", or "chien", or "hund", on sight of this animal. Here
in America we have children born of stocks that have spoken foreign
languages for many generations; but English becomes their "native tongue"
after a generation or two here, that is to say, as soon as the child hears
English from infancy.
In short, there is no likelihood whatever that any instinct {114} ever
originated out of a habit or learned reaction. If we could believe it had so
originated, that would furnish an easy explanation of the origin of an
instinct; but it is contrary to all the known facts.
Instincts Not Necessarily Useful in the Struggle for Existence
Some of the best-known instincts, such as feeding or mating--or hunting, or
flight from danger, or the hibernation of frogs--are so essential for the
survival of the individual or the propagation of the next generation that we
tend to assume that all instinctive behavior has "survival value", value, that
is, towards the survival of the individual or of the race. But this is an
assumption, and it seems not to be borne out by actual observations of
instinctive behavior, since, along with the definitely useful reactions, others
occur that would seem to have no survival value. Perhaps the crowing of
the rooster at dawn would be a case in point; or the elaborate bowing that
is observed in some kinds of birds. And there are the less definite, rather
random movements of squirming, kicking, running about, wrinkling up the
face, etc., that appear in young animals. We may well hesitate before
definitely asserting that these movements are of no use for survival, but at
least their use is not obvious, and there is no reason for assuming that all
instinctive behavior must necessarily be useful.

CHAPTER VI

124

To be sure, the "struggle for existence" would eliminate individuals who
behaved in ways that seriously handicapped them in procuring food or
escaping from enemies; and therefore we should not expect to find really
harmful instincts preserved in the race. But a mode of behavior might be
neutral in this respect, or even slightly disadvantageous, and yet not be
weeded out unless the struggle for existence were very keen.
{115}
The main point is that the psychologist should take instinctive behavior as
he finds it, and not allow himself to be prejudiced by the assumption that
instinct must necessarily be useful. That has to be shown in each case, not
assumed at the outset.
The So-called Instincts of Self-preservation and of Reproduction
You will hear it stated, by some, that there are just two instincts, and that
all instinctive behavior belongs under the head of one or the other of these
two. The one is the instinct to preserve one's individual life, and the other is
the instinct to propagate the species. Mating, nesting and care of the young
come under the reproductive instinct, while feeding, flight from danger, and
shunning extreme heat or cold are modes of self-preservation. This seems
logical enough, but it is very bad psychology. It amounts to a classification
of native reactions from an external point of view, without any
consideration of the way the individual is organized.
Perhaps the most obvious objection to these two supposedly all-inclusive
instincts is found in what has just been said, to the effect that some
instinctive behavior has no known survival value. This amounts to saying
that some instincts do not serve either the preservation of the individual or
the propagation of the species; and such a statement is probably true,
especially of human instincts.
But even if this objection should not hold, there is another, more radical
one. Neither of these two big "instincts" is a behavior unit in any sense.
Take the "instinct of self-preservation", for example. It would certainly

CHAPTER VI

125

have to include both feeding and escape from danger. But feeding and
flight from danger do not belong in a single series {116} of acts; they are
two distinct series, and represent two distinct tendencies. So distinct are
they that, as we shall see in the next chapter, they are antagonistic. If the
danger-avoiding tendency is aroused, the whole feeding and digestive
activity is checked for the time being. The two instincts are antagonistic, in
their actual operation; throw one into action, and you throw the other out.
It is only from an external point of view that the two can be classed
together; in the organization of the individual they are entirely separate.
Not much different is the "instinct of reproduction". In birds, to be sure,
there is a fairly continuous series of reactions, that begins with mating,
continues with nesting, laying eggs and incubating them, and ends in the
care of the young birds. But in mammals there is no such continuous series
of reproductive acts, but mating comes to a close and an interval elapses in
which there is no behavior going on that has anything to do with
reproduction.
Before giving a detailed list of the various human instincts, we shall do well
to consider emotion, which is closely bound up with instinct.
{117}
EXERCISES
1. Outline the chapter.
2. Explain the differences between these three;
Action governed by instinct.
Action governed by habit.
Action governed by deliberation.
3. What is the objection to each of the following expressions?

CHAPTER VI

126

(a) "The ex-soldier instinctively saluted when he met an officer in the
street."
(b) "The bee knows by instinct how to construct the honeycomb."
4. Why is it so difficult to find a valid distinction between instinct and reflex
action?
5. Why are instincts more universal and uniform than habits?
6. How is instinct an important matter to consider in a study of human
motives?
7. Show how the behavior of a hungry child of six or eight years fits the
picture of a "loosely organized instinct".
REFERENCES
William James in his Principles of Psychology, 1890, has a very
stimulating chapter on instinct, in Vol. II, pp. 383-441.
John B. Watson, in Chapters IV and V of his Behavior, 1914, gives a good
account of the instincts of animals.
{118}

CHAPTER VII

127

CHAPTER VII
EMOTION
VARIOUS ORGANIC STATES, AND THE CONSCIOUS STATES THAT
GO WITH THEM
Joy, sorrow, fear, anger, amusement, disgust and curiosity illustrate the
meaning of the term "emotion". An emotion is a "moved" or stirred-up state
of mind. Or, since almost any such state of mind includes also elements that
are cognitive, like recognition of present objects or memories of the past,
we might better speak of emotion as the stirred-up-ness present in a state of
mind. The emotional part of the total state may be so strong as to
overshadow all other components, or it may have less intensity down to
zero.
Such is emotion from the introspective point of view; but it can also be
observed objectively, and in fact there is more to say about it objectively
than introspectively. What appears to introspection as the scarcely
analyzable state of anger appears to the external observer as clenched fists,
flushed face, labored breathing, tense muscles, loud voice, and many other
describable details. Anger is a state of the organism, or state of the
individual, rather than simply a state of mind.
We shall have a more comprehensive definition, then, if we substitute "state
of the individual" for "state of mind", and say that emotion is a stirred-up
state of the individual. It is a conscious state, however; an "unconscious
emotion" would be practically a contradiction in terms. Not but that a
person may be angry without knowing it. He may be {119} "unconscious of
the fact" that he is angry; which simply means that he is not introspectively
observing himself and analyzing his mental state. But it is impossible that
his organic state shall be all stirred up and his mental state meanwhile
perfectly calm and intellectual. In short, an emotion is a conscious
stirred-up state of the organism.
Organic States That Are Not Usually Classed as Emotions

CHAPTER VII

128

Something was said before about "organic states", under the general head
of tendencies to reaction. Fatigue was an example. Now we could include
fatigue under the term, "stirred-up state of the organism"; at least, if not
precisely "stirred-up", it is uneasy. It is a deviation from the normal or
neutral state. Also, it is often a conscious state, as when we speak of the
"tired feeling"; not a purely cognitive state, either--not simply a recognition
of the fact that we are fatigued--but a state of disinclination to work any
longer. Though fatigue is thus so much like an emotion that it fits under our
definition, it is not called an emotion, but a sensation or complex of
sensations. After hard muscular work, the state of the muscles makes itself
felt by "fatigue sensations", and the sum total of these, coming from many
different muscles, makes up the complex sensation of fatigue. After
prolonged mental work, there may be fatigue sensations from the eyes and
perhaps from the neck, which is often fixed rigidly during strenuous mental
activity; and there are perhaps other obscure fatigue sensations originating
in other organs and contributing to the total sensation which we know as
mental fatigue, or as general fatigue.
Many other organic states are akin to emotion in the same way. The
opposite of fatigue, the "warmed-up" condition, brought on by a certain
amount of activity after {120} rest, is a case in point. It is a deviation from
the average or neutral condition, in the direction of greater readiness for
activity. The warmed-up person feels ready for business, full of "ginger" or
"pep"--in short, full of life. The name "euphoria" which means about the
same as "feeling good", is given to this condition. Drowsiness is another of
these emotion-like states; but hunger and thirst are as typical examples as
any.
How These Organic States Differ from Regular Emotions
Now why do we hesitate to call hunger, fatigue and the rest by the name of
emotions? For two reasons, apparently. There are two salient differences
between an organic state such as hunger, and an emotion such as anger.
Hunger we call a sensation because it is localized; we feel it in the region
of the stomach. Thirst we localize in the throat, muscular fatigue in the

CHAPTER VII

129

fatigued muscles, and there are several other organic states that come to us
as sensations from particular organs. This is not entirely true of drowsiness
or euphoria, but it is still less true of the emotions, which we feel as in us,
rather than in any partof us. We "feel mad all over", and we feel glad or
sorry all over. It is true that, traditionally, the heart is the seat of the
emotions, which means, no doubt, that they are felt in the region of the
heart more than elsewhere; and other ancient "seats", in the bowels or
diaphragm, agree to this extent that they point to the interior of the trunk as
the general location where the emotions are felt. But at best the location of
emotions is much less definite than that of the sensations of fatigue or
hunger.
The second difference between the emotions and the other organic states
comes to light when we notice their causes. Thirst, as an organic state, is a
lack of water resulting {121} from perspiration, etc.; hunger as an organic
state results from using up the food previously eaten; fatigue results from
prolonged muscular activity. Each of these organic states results naturally
from some internal bodily process; while, on the contrary, the exciting
cause of an emotion is usually something external which has nothing
directly to do with the internal state of the body. Here I am, perfectly calm
and normal, my organic state neutral, when some one insults me and
throws me into a state of rage; this queer state seems to be inside me,
specially in the trunk. Now how can the sound of the insulting person's
voice produce any change in my insides? Evidently, by way of the auditory
nerve, the brain and lower centers, and the motor nerves to the interior.
While, then, organic states of the hunger class result directly from internal
physiological processes, the organic state in an emotion is aroused by the
brain, the brain itself being aroused by some stimulus, usually external.
The Organic State in Anger
But perhaps we are going too fast in assuming that there is any peculiar
internal state in emotion. Possibly our subjective localization of anger in
the trunk is all wrong, and everything there is going on as usual. At least,
the question is squarely before us whether or not there is any internal
bodily response in emotion.

CHAPTER VII

130

Suppose we have a tame cat, that knows us well, and, after feeding her a
good meal containing some substance that is opaque to the X-rays, suppose
we place her on a table and pass X-rays through her body, so as to get a
visible shadow of the stomach upon the plate of the X-ray machine. Well
and good; the cat is contentedly digesting her meal, and the X-ray picture
shows her stomach to be making rhythmical churning movements. In comes
a fox {122} terrier and barks fiercely at the cat, who shows the usual feline
signs of anger; but she is held in position and her stomach kept under
observation--when, to our surprise, the stomach movements abruptly cease,
not to begin again till the dog has been gone for perhaps fifteen minutes.
The churning movements of the intestine cease along with those of the
stomach, and, as other experiments show, even the gastric juice stops
flowing into the stomach. The whole business of digestion halts during the
state of anger. So anger is an organic state, without doubt. At least in
cats--but the same is found to be true of man, and hence the excellent rule
not to get angry on a full stomach.
Stomach-inhibition is not the only internal response during anger. The
heart, so long regarded as the seat of the emotions, does beat more forcibly
than usual; and the diaphragm, where the old Greeks located the emotions,
does make extra-strong breathing movements. There are yet other and
more curious changes that have recently been discovered by the
physiologists.
Glandular Responses During Emotion
Thus far, we have been considering muscular responses, but now we must
turn our attention to the glands. The glands are often affected during
emotion, as witness the shedding of tears in grief, sweating in anger, the
dry mouth during fear due to inhibition of the salivary glands, and the
stoppage of the gastric juice during anger, as just noted. These particular
glands all pour out their secretions either upon the skin or upon the mucous
membrane of the mouth, stomach, etc.; and such secretion is called
"external" in distinction from the "internal secretion" of certain other
glands which may be called the glands of internal secretion or the
"endocrine glands". Internal secretions are {123} discharged into the blood

CHAPTER VII

131

vessels, and carried by the blood to all parts of the body, and they have
important effects on the activity of various organs.
Of the endocrine glands, we will mention only two, which are known to
play an important part in mental life.
The thyroid gland, situated in the lower part of the neck, is necessary for
normal brain activity. Without its internal secretion, brain activity is very
sluggish.
The adrenals, two little glands located near the kidneys (whence their
name, though they have nothing to do with the kidney in function), have a
close connection with such emotions as anger. In the normal or neutral
state of the organism, the adrenal secretion oozes slowly into the blood,
and has a tonic influence on the heart and muscles. But let an anger
stimulus occur, and within a few seconds the adrenals are secreting
rapidly; all the organs soon get a big dose of the adrenal secretion, and
some of them are strongly affected by it. It hastens and strengthens the
action of the heart, it causes the large veins inside the trunk to squeeze the
blood lagging there back to the heart; and by these two means greatly
quickens the circulation. It also affects the liver, causing it to discharge
large quantities of stored sugar into the blood. Thus the muscles of the
limbs get an unusual quantity of their favorite fuel supplied them, and also,
by the increased circulation, an unusual quantity of oxygen; and they are
enabled to work with unusual energy. The adrenal secretion also protects
them in some way against fatigue.
While the adrenal secretion is thus exerting a very stimulating influence on
the limb muscles, it is having just the opposite effect on the digestive
organs; in fact it is having the effects described above as occurring there
during anger. These inhibitory effects are started by the stomach nerves,
but are continued by the action of the adrenal juice {124} on the stomach
walls. The rapid secretion of the adrenal glands during anger is itself
aroused by the nerve running to this gland.
The Nerves Concerned in Internal Emotional Response

CHAPTER VII

132

There is a part of the nervous system called the "autonomic system", so
called because the organs it supplies--heart, blood vessels, stomach,
intestines and other internal organs, possess a large degree of "autonomy"
or independence. The heart, it will be remembered, beats of itself, even
when cut off altogether from any influence of the nerve centers; and the
same is true in some measure of the other internal organs. Yet they are
subject to the influence of the nerve centers, which reinforce and inhibit
their activity. Each internal organ has a double supply of nerves, one nerve
acting to reinforce the activity of the organ and the other to inhibit it; and
both the reinforcing and the inhibiting nerves belong to the autonomic
system.
The autonomic is not separate from the main nervous system, but consists
of outgoing axons from centers in the cord and "medulla" (part of the brain
stem). It has three divisions, one from the medulla, one from the middle
reach of the cord, and one from the lower part of the cord; and these three
divisions are related to three different emotional states. The upper division,
from the medulla, favors digestion by promoting the flow of gastric juice
and the churning movements of the stomach; and at the same time it seems
to favor the comfortable, rather lazy state that is appropriate for digestion.
The middle division (often called the "sympathetic", though the name is
rather misleading to a student of psychology, as it has nothing to do with
"sympathy") checks digestion, hastens the heart beat, and stimulates the
adrenal glands to rapid secretion, thus giving {125} rise to the organic
condition of anger. The lower division has to do with the bladder, rectum
and sex organs, and is active during sex excitement, for one thing.
The lower centers in the medulla and cord that give rise to the autonomic
nerves are themselves much under the influence of the higher, cerebral
centers. Thus appetite for food, and the flow of gastric juice, can be
aroused by the sight of good food, or by hearing or reading about food, or
even by merely thinking of food; and both anger and sex appetite can be
aroused in corresponding ways.
We should notice right here the antagonism that exists between the middle
division of the autonomic and the other two. Suppose the upper division is

CHAPTER VII

133

active, as in comfortable digestion, when an angering stimulus supervenes;
then, as we have seen, digestion halts, the upper autonomic is shunted out
of action by the middle division. In the same way, sex appetite is shunted
out by anger.
The Emotional State as a Preparatory Reaction
An emotion is often spoken of as a disturbance of the normal quiet state,
and as if it represented a breakdown of the organism's machinery. Anger or
fear is often a nuisance in civilized life, and any strong emotion is apt to
disturb mental work or skilled manual work. But if we think ourselves back
into a primitive condition of life, when anger means a fight, we see that the
organic response in anger makes a first-class preparation for the fight.
Rapid circulation, abundant muscular fuel, protection from fatigue--these
are all positively useful; and the halting of digestion is useful also in
relieving the circulation from taking care of an activity that can afford to
wait.
What we have been calling the "organic state in anger" occurs also in fear
of the strong type (as distinguished from {126} fear paralysis), and in
certain other states that are not exactly either fear or anger, such as the
state of a football player before the game, or the state of a student about to
take an examination. It is the state of excitement or of being "all keyed up".
So far as known, the organic response (including the adrenal secretion) is
the same in these various instances of excitement: anger, fear, zeal and so
on. When an individual is in this organic state, his muscles will work
harder and longer than is otherwise possible; and thus are explained those
remarkable cases of extraordinary strength and endurance in great
emergencies, as in escaping from a fire or from a bombarded city.
The fear-anger state of the organism, being certainly a state of
preparedness for attack or defense, suggests the following generalization:
"Any emotion represents internal preparation for some type of overt
action." This holds good, at least, for food appetite and sex appetite.
Regarding the other emotions, we know too little of the internal responses
that may occur, to judge whether or not they have any utility as

CHAPTER VII

134

preparatory reactions.
"Expressive Movements," Another Sort of Preparatory Reactions
Though we know little of any internal response in many of the emotions, we
almost always find some characteristic external movement, such as smiling,
scowling, pouting, sneering, sobbing, screaming, shouting or dancing. By
aid of such "expressive movements" we are sometimes able to judge the
emotional state of another person. But what is the sense of these
movements? At first thought, the question itself is senseless, the movements
are so much a matter of course, while on second thought they certainly do
seem odd. What sense is there is protruding the lips when sulky, {127} or in
drawing up the corners of the mouth and showing the canine teeth in
contempt? Perhaps they are just odd tricks of instinct--for we agreed in the
preceding chapter not to assume all instinctive responses to be useful.
Darwin, however, after studying a great many of these expressive
movements, both in men and in animals, reached the conclusion that, if not
of present utility, they were survivals of acts that had been useful earlier in
the life of the individual or of the race.
Shaking the head from side to side, in negation or unwillingness, dates
back to the nursing period of the individual's life, when this movement was
made in rejecting undesired food. Directly useful in this case, it was
carried over to analogous situations that aroused the child's reluctance.
Showing the teeth in scorn dates back, according to Darwin, to a prehuman
stage of development, and is seen in its useful form in animals like the dog
or gorilla that have large canine teeth. Baring the teeth in these animals is
a preparation for using the teeth; and often, also, it frightens the enemy
away and saves the bother of actually attacking "small fry". The movement,
Darwin urges, has survived in the race, even after fighting with the teeth
has largely disappeared.
Many other expressive movements are traced back in a similar way, though
it must be admitted that the racial survivals are usually less convincing
than those from the infancy of the individual. The nasal expression in

CHAPTER VII

135

disgust was originally a defensive movement against bad odors; and the set
lips of determination went primarily with the set glottis and rigid chest that
are useful in lifting heavy weights or in other severe muscular efforts. Such
movements, directly useful in certain simple situations, become linked up
with analogous situations in the course of the {128} individual's
experience. Many of them, certainly, we can regard as preparatory
reactions.
Do Sensations of These Various Preparatory Reactions Constitute the
Conscious State of Emotion?
No one can doubt that some of the bodily changes that occur during an
emotion make themselves felt as sensations. Try this experiment: pretend to
be angry--it is not hard!--go through the motions of being angry, and notice
what sensations you get. Some from the clenched fist, no doubt; some from
the contorted face; some from the neck, which is stiff and quivering. In
genuine anger, you could sense also the disturbed breathing, violent heart
beat, hot face. The internal responses of the adrenal glands and liver you
could not expect to sense directly; but the resulting readiness of the limb
muscles for extreme activity is sometimes sensed as a feeling of tremendous
muscular power.
Now lump together all these sensations of bodily changes, and ask yourself
whether this mass of sensations is not identical with the angry state of
mind. Think all these sensations away, and ask yourself whether any angry
feeling remains. What else, if anything, can you detect in the conscious
emotional state besides these blended sensations produced by internal and
external muscular and glandular responses?
If you conclude that the conscious emotion consists wholly of these
sensations, then you are an adherent of the famous James-Lange theory of
the emotions; if you find any other component present in the emotion, you
will find this theory unacceptable.
{129}

CHAPTER VII

136

The James-Lange Theory of the Emotions
The American psychologist James, and the Danish psychologist Lange,
independently of each other, put forward this theory in the early eighties of
the last century, and it has ever since remained a great topic for discussion.
According to the theory, the emotion is the way the body feels while
executing the various internal and expressive movements that occur on
such occasions. The "stirred-up state of mind" is the complex sensation of
the stirred-up state of the body. Just as fatigue or hunger is a complex of
bodily sensations, so is anger, fear or grief, according to the theory.
James says, we do not tremble because we are afraid, but are afraid
because we tremble. By that he means that the conscious state of being
afraid is composed of the sensations of trembling (along with the sensations
of other muscular and glandular responses). He means that the mental
state of recognizing the presence of danger is not the stirred-up state of
fear, until it has produced the trembling and other similar responses and
got back the sensations of them. "Without the bodily states following on the
perception"--i.e., perception of the external fact that arouses the whole
emotional reaction--"the latter would be purely cognitive in form, pale,
colorless, destitute of emotional warmth. We might then see the bear, and
judge it best to run, receive the insult, and deem it right to strike, but we
should not actually feel afraid or angry."
It has proved very difficult to submit this theory to a satisfactory test. The
only real test would be to cut off sensations from the interior of the trunk
entirely; in which case, if the theory is right, the conscious emotion should
fail to appear, or at least lack much of its "emotional warmth". Evidence of
this sort has been slow in coming in. One or {130} two persons have turned
up at nerve clinics, complaining that they no longer had any emotions, and
were found to have lost internal bodily sensation. These cases strongly
support the theory, but others have tended in the opposite direction. The
fact that the internal response is the same in anger, and in fear of the
energetic type, shows that the difference between these emotions must be
sought elsewhere. Possibly sufficient difference could be found in the
expressive movements, or in minor internal responses not yet discovered. If

CHAPTER VII

137

not, the theory would certainly seem to have broken down at this point.
In any case, there is no denying the service done by the James-Lange
theory in calling attention to bodily sensations as real components of the
conscious emotional state.
Emotion and Impulse
Most people are rather impatient with the James-Lange theory, finding it
wholly unsatisfactory, though unable to locate the trouble precisely. They
know the theory does not ring true to them, that is all. Now the trouble lies
just here: what they mean by "being afraid" is "wanting to get away from
the danger", what they mean by "being angry" is "wanting to strike the
offending person", and in general what they mean by any of the named
"emotions" is not a particular sort of "stirred-up conscious state", but an
impulse towards a certain action or a certain result. Evidently it would be
absurd to say we want to get away from the bear because we tremble, or
that until we started to tremble we should be perfectly indifferent whether
the bear got us or not.
The tendency to escape is aroused directly by the perception of danger; of
that there can be no doubt. It does not depend on trembling, but for that
matter neither does it depend on feelingafraid. Sometimes we recoil from a
{131} sudden danger before experiencing any thrill of fear, and are
frightened and tremble the next moment, after we have escaped. The
stirred-up state develops more slowly than the tendency to escape. The seen
danger directly arouses an adjustment towards the end-result of escape,
and both the preparatory bodily responses and the feeling of fear develop
after this adjustment has been set up. If the end-result is reached instantly,
the preparatory reactions and the feeling may not develop at all, or they
may put in an appearance after the main act is all over. There is nothing in
all this that speaks either for or against the James-Lange theory.
These statements need further elucidation, however. Notice, first, that
psychology makes a perfectly proper and important distinction between
emotion and impulse. In terms of consciousness, emotion is "feeling

CHAPTER VII

138

somehow", and impulse is "wanting to do something". In behavior terms,
emotion is an organic state, and impulse an adjustment of the nerve centers
towards a certain reaction. An impulse is a conscious tendency.
Since emotion and impulse so often go together, common sense does not
bother to distinguish them, and the common names for the "emotions" are
more properly names of impulses. Fear means the impulse to escape, rather
than any specific stirred-up state. Psychology has, indeed, made a mistake
in taking over these names from common speech and trying to use them as
names of specific emotional states. We were having some difficulty, a few
moments ago, in finding any great distinction between fear and anger,
considered as emotional states--just because we were overlooking the
obvious fact that "fear" is an impulse to escape from something, while
"anger" is an impulse to get at something and attack it. The adjustments
are very different, but the organic states are much alike.
{132}
The organic state in fear or anger cannot generate the escape or fighting
tendency, since the two tendencies are so different in spite of the likeness of
the organic state. The tendencies are aroused directly by the perception of
the dangerous or offensive object. The order of events is as follows. The
stimulus that sets the whole process going is, let us say, a bear in the
woods. First response: seeing the bear. Second response: recognizing the
dangerous situation. Third response: adjustment towards escape. Fourth
response (unless escape is immediate): internal preparatory reactions,
adrenal, etc.; also, probably, external expressive movements and
movements steered in the general direction of escape. Fifth response:
conscious stirred-up state consisting of blended sensations of all these
preparatory reactions. Sixth response (by good luck): definitive escape
reaction. Seventh response: satisfaction and quiescence.
[Illustration: Fig. 24.--Here the stimulus-response diagram is complicated
to take account of the emotional state. The ellipse here stands for the brain.
S arouses T, a tendency towards the response R. But T also arouses P, a
bodily state of preparedness, and sensations (E) of this bodily state,

CHAPTER VII

139

together with T, constitute the conscious state of the individual while he is
tending towards the response, or end-result, R.]
Emotion Sometimes Generates Impulse
Typically, impulse generates emotion. The reaction tendency is primary
and the emotion secondary.
But suppose the organic state of fear to be {133} present--never mind how
it got there--might it not act like hunger or fatigue, and generate a fear
impulse? Could it not be that a person should first be fearful, without
knowing what he was afraid of and without really having anything to be
afraid of; and then, as it were, findsomething to be afraid of, something to
justify his frightened state? This may be the way in which abnormal fears
sometimes arise: a naturally timid individual is thrown by some obscure
stimulus into the state of fear, and then attaches this fear to anything that
suggests itself, and so comes to be afraid of something that is really not
very terrific, such as the number two, "I mustn't do anything twice, that
would be dangerous; if I do happen to do it twice, I have to do it once more
to avoid the danger; and for fear of inadvertently stopping with twice, it is
best always to do everything three times and be safe." That is the report of
a naturally timorous young man. We all know the somewhat similar
experience of being "nervous" or "jumpy" after escaping from some
danger; the organic fear state, once aroused, stays awhile, and predisposes
us to make avoiding reactions. In the same way, let a man be "all riled up"
by something that has happened at the office, and he is likely to take it out
on his wife or children. Slightly irritating performances of the children, that
would usually not arouse an angry reaction, do so this evening, because
that thing at the office has "made him so cross."
In the same way, let a group of people get into a very mirthful state from
hearing a string of good jokes, and a hearty laugh may be aroused by a
feeble effort that at other times would have fallen flat.
In such cases, the organic state, once set up in response to a certain
stimulus, persists after the reaction to that stimulus is finished and

CHAPTER VII

140

predisposes the individual to make the same sort of reaction to other
stimuli.
{134}
Emotion and Instinct
Anger, fear, lust, the comfortable state appropriate to digestion, grief (the
state of the weeping child), mirth or amusement, disgust, curiosity, the
"tender emotion" (felt most strongly by a mother towards her baby), and
probably a few others, are "primary emotions". They occur, that is to say,
by virtue of the native constitution, and do not have to be learned or
acquired through experience. They are native states of mind; or, as modes
of behavior, they are like instincts in being native behavior.
One distinction between emotional and instinctive behavior is that the
emotion consists of internal responses, while the instinct is directed
outwards or at least involves action on external objects. Another distinction
is that the emotional response is something in the nature of a preparatory
reaction, while the instinct is directed towards the end-reaction.
The close connection of emotion and instinct is fully as important to notice
as the distinction between them. Several of the primary emotions are
attached to specific instincts: thus, the emotion of fear goes with the instinct
to escape from danger, the emotion of anger goes with the fighting instinct,
the emotion of lust with the mating instinct, tender emotion with the
maternal instinct, curiosity with the exploring instinct. Where we find
emotion, we find also a tendency to action that leads to some end-result.
It has been suggested, accordingly, that each primary emotion is simply the
"affective" phase of an instinct, and that every instinct has its own peculiar
emotion. This is a very attractive idea, but up to the present it has not been
worked out very satisfactorily. Some instincts, such as that for walking,
seem to have no specific emotion attached to them. Others, like anger and
fear, resemble each other very {135} closely as organic states, though
differing as impulses. The really distinct emotions (not impulses) are much

CHAPTER VII

141

fewer than the instincts.
The most important relationship between instinct and emotion is what we
have seen in the cases of anger and a few others, where the emotion
represents bodily readiness for the instinctive action.
The Higher Emotions
We have been confining our attention in this chapter to the primary
emotions. The probability is that the higher emotions, esthetic, social,
religious, are derived from the primary in the course of the individual's
experience.
Primary emotions become refined, first by modifications of the motor
response, by which socially acceptable reactions are substituted for the
primitive crying, screaming, biting and scratching, guffawing, dancing up
and down in excitement, etc.; second by new attachments on the side of the
stimulus, such that the emotion is no longer called out by the original
simple type of situation (it takes a more serious danger, a subtler bit of
humor, to arouse the emotional response); and third by combination of one
emotion with another. An example of compound emotion is the blend of
tenderness and amusement awakened in the friendly adult by the actions of
a little child. Hate is perhaps a compound of anger and fear, and pity a
compound of grief and tenderness. There are dozens of names of emotions
in the language--resentment, reverence, gratitude, disappointment,
etc.--which probably stand for compound emotions rather than for primary
emotions, but the derivation of each one of them from the primary emotions
is a difficult task. The emotional life cannot be kept apart from the life of
ideas, for the individual is a good deal of a unit.
{136}
EXERCISES
1. Outline the chapter.

CHAPTER VII

142

2. Make a list of 20 words denoting various emotional states.
3. Trace the expressive facial movement of pouting back to its probable
origin in the history of the individual.
4. What internal nerves are concerned with digestion? With fear?
5. Show by diagrams the differences between (a) the common-sense theory
of the emotions, (b) the James-Lange theory, (c) the James-Lange theory
modified to take full account of the reaction-tendency.
6. Make a list of objections to the James-Lange theory, and scrutinize each
objection carefully, to see
(a) whether it really attacks the theory, or misconceives it.
(b) whether it carries much or little weight.
7. Act out several emotions, (a) by facial expression alone, and (b) by facial
expression plus gestures, and let another person guess what emotion you
are trying to express. How many times does he guess right under (a), and
under (b)?
8. Discuss the relative practical importance of emotion and impulse.
REFERENCES
For the James-Lange theory, see the chapter on the emotions by William
James, in his Principles of Psychology, 1890, Vol. II, pp. 442-485.
For Darwin's views on expressive movements, see his Expression of the
Emotions in Man and Animals, first published in 1872.
For pictures of facial expression in various emotions, see Antoinette
Feleky, in the Psychological Review for 1914, Vol. 21, pp. 33-41.

CHAPTER VII

For the internal physiological changes, see Walter B. Cannon's Bodily
Changes in Pain, Hunger, Fear and Rage, 1915.
For an interesting and important view of the close connection between
emotion and instinct, see William McDougall's Introduction to Social
Psychology, Chapter II.
{137}

143

CHAPTER VIII

144

CHAPTER VIII
INVENTORY OF HUMAN INSTINCTS AND PRIMARY EMOTIONS
A LIST OF THE NATIVE STOCK OF TENDENCIES AND OF THE
EMOTIONS THAT SOMETIMES GO WITH THEM.
It would be a great mistake to suppose that instinct was important only in
animal or child psychology, because the human adult governed his conduct
entirely by reason and calculation of consequences. Man does not outgrow
instinct, any more than he outgrows emotion. He does not outgrow the
native reaction-tendencies. These primitive motives remain in force,
modified and combined in various ways, but not eliminated nor even
relegated to an unimportant place. Even in his most intelligent actions, the
adult is animated by motives that are either plain instincts or else
derivatives of the instincts. According to some of the leaders in psychology,
he has no other motives than these; according to this book, as will be set
forth later, there are "native likes and dislikes" (for color, tone, number,
persons, etc.) to be placed beside the instincts as primary motives; but,
according to either view, the instincts are extraordinarily important in the
study of motivation, and a complete and accurate list of them is very much
to be desired. Life is a great masquerade of the instincts, and it is not only
entertaining to unmask them, but illuminating as well.
A complete account of an instinct would cover the following points: the
stimulus that naturally arouses it, the end-result at which it is aimed, the
preparatory reactions that occur, external and internal; and also, from the
{138} introspective side, the conscious impulse, the peculiar emotional
state (if any), and the special sort of satisfaction that comes when the
end-result is reached. Further, we should know what modifications or
disguises the instinct takes on in the course of experience--what new stimuli
acquire the power of arousing it, what learned reactions are substituted for
the native preparatory and final reactions, and what combinations occur
between the instinct in question and other reaction-tendencies.

CHAPTER VIII

145

Besides all this, it would be very desirable to present convincing evidence
that each instinct listed is a genuine instinct, a part of the native equipment,
and not something built up by experience and training. It is rather absurd,
the free and easy way in which an instinct is often assumed, simply to fit
behavior which needs to be explained--a money getting instinct, for
example, or a teacher-hating instinct. Since money and teachers do not
exist in a state of nature, there can be no instincts specifically related to
them; and it is incumbent on the psychologist to show how such acquired
tendencies are derived from the native tendencies.
The full program outlined above being much too extensive to follow out
completely in this chapter, we shall only mention a few salient points under
each instinct. We shall try to point out the primitive behavior of the child,
that reveals the instinct at its lowest terms, and give some hint also of its
importance in adult behavior.
Classification
Of all the instincts, two groups or classes stand out from the rest: the
responses to organic needs, and the responses to other persons. The first
class includes eating, avoiding injury, and many others; the second class
includes the herd instinct, the mating instinct and the parental instinct,
these three and perhaps no others.
{139}
These two groups out, the rest are rather a miscellaneous collection,
including the "random" or playful activity of young children, locomotion,
vocalization, laughter, curiosity, rivalry and fighting. They might be named
the "non-specific instincts", because the stimulus for each is not easy to
specify, being sometimes another person, so that this group has great social
importance, but sometimes being impersonal. This third class might also be
called the "play instincts", since they are less essential than the other
classes for maintaining the individual life or for propagating the species;
and are, we may say, less concerned with the struggle for existence than
with the joy of living.

CHAPTER VIII

146

Our classification then has three heads:
(1) Responses to organic needs, (2) Responses to other persons, (3) Play
responses.
Responses to Organic Needs
Something has already been said [Footnote: See above, pp. 79-81, 112.] of
the manner in which an organic state, such as lack of water, acting on
internal sensory nerves, arouses in the nerve centers an adjustment towards
an end-result, and how, if the end-result cannot immediately be attained,
preparatory reactions occur, the preparatory reactions being in some cases
closely attached, by nature, to the main tendency, and in other cases only
loosely attached so that the tendency leads to trial and error behavior. The
reactions that are nearest to the end-result are likely to be closely attached
to the main tendency, while those that are farther from the end-result are
loosely attached. Thus, in the case of thirst, the drinking movement itself is
about all, in man, that is purely instinctive, {140} and the way of getting
water to the mouth, or the mouth to the water, is a matter for trial and
error, and only becomes fixed as the result of a process of learning. Still
less can we mention any specific water-seeking reactions, in the human
being, that are provided by the native constitution. Yet the whole business
of relieving thirst is directed by the native thirst-impulse, and to that extent
is an instinctive activity. And shall we say that so simple a matter as
meeting this organic need is below the dignity of psychology, and can have
little influence on the behavior of mankind? Hardly, when we think of the
rôle played by springs, wells and drinking places of all kinds in the life of
the race, of aqueducts and reservoirs, of all the beverages that have been
invented, and of all the people whose job it has been to provide and
dispense them. To be sure, any beverage with a taste, or a "kick", is not
simply a thirst-reliever, but makes some additional appeal, good or bad;
but all this simply illustrates the way instincts become modified, by
combination with other instincts, and by the learning and fixing of various
preparatory reactions that were not provided, ready-made, in the native
constitution. The drinking instinct, or thirst impulse, is a very good example
of this whole class of organic instincts.

CHAPTER VIII

147

Instincts connected with hunger.
Here again, the reactions nearest to the end-result (food in the stomach)
are provided by nature. Sucking and swallowing appear at birth, chewing
with the appearance of the teeth; and the infant also makes what seem to be
instinctive movements of seeking the breast, as well as movements of
rejecting it when satiated and of spitting out bad-tasting food. Putting food
(and other things) into the mouth by the hands seems almost instinctive,
and yet it has to be fixed by trial and error. Anything like definite
food-seeking behavior, amounting to a hunting instinct, scarcely gets a
chance to show itself in {141} the human child, because his food is
provided for him. In many animals, hunting is a highly organized instinct;
thus, crouching, stalking, springing and teasing the mouse when caught,
have been proved to be instinctive in young cats. Some animals have
definite food-storing instincts also, and possibly food-storing shows the
acquisitive or collecting tendency in its lowest terms. Possibly, that is to
say, hunting and collecting, as well as disgust (primarily of bad-tasting or
bad-smelling food), are originally parts of the food-getting behavior,
having the general character of reactions preparatory to eating. However
this may be, we can easily see the great importance of the hunger motive in
human life; we have only to consider the matter in the same way as we
considered thirst just above.
Breathing and air-getting.
Breathing, obviously a native reaction, is ordinarily automatic and needs
no preparatory reactions, simply because air is so easy to get. But let
breathing be difficult, for any reason, and the stifling sensation is as
impulsive as hunger or thirst. The stuffy air in a cave or in a hole under a
haymow will lead a child to frantic escape. Possibly the delight in being out
of doors which shows itself in young children, and is not lost in adults,
represents a sort of air-hunting instinct, parallel to food-hunting. Closely
connected with breathing is the function of circulation, automatic for the
most part; and we should mention also the organic needs of
waste-elimination, which give impulsive sensations akin to hunger and
thirst, and lead to more or less organized instinctive reactions.

CHAPTER VIII

148

Responses to heat and cold.
The warm-blooded animals, birds and mammals, have the remarkable
power of keeping the body temperature constant (at 98-99 degrees
Fahrenheit, in man, somewhat higher in birds), in spite of great variations
in the external temperature to which the body is exposed, and in spite of
great variations in the {142} amount of heat generated in the body by
muscular exercise. Sweating and flushing of the skin are reactions to heat,
and prevent the body temperature from rising; paling of the skin, shivering
and general muscular activity are responses to cold and prevent the body
temperature from falling. Shrinking from great heat or cold are also
instinctive, while seeking shelter from the heat or cold is a preparatory
reaction that is not definitely organized in the native constitution of man,
but gives rise to a great variety of learned reactions, and plays a
considerable part in life.
Shrinking from injury.
The "flexion reflex" of the arm or leg, which pulls it away from a pinch,
prick or burn, is the type of a host of defensive reactions--winking,
scratching, rubbing the skin, coughing, sneezing, clearing the throat,
wincing, limping, squirming, changing from an uncomfortable
position--most or all of them instinctive reactions. With each goes some
sort of irritating sensation, as pain, itching, tickling, discomfort; and a
conscious impulse to get rid of the irritation is often present. When the
simpler avoiding reactions do not remove the irritating stimulus, they are
repeated more vigorously or give way to some bigger reaction tending
towards the same result. The climax of the avoiding reactions is flight or
running away. Akin to flight are cowering, shrinking, dodging or warding
off a blow, huddling into the smallest possible space, getting under cover,
clinging to another person; and most or all of these, too, are instinctive
reactions. With flight and the other larger danger-avoiding reactions there
is often present, along with the impulse to escape, the stirred up organic
and conscious state of fear.

CHAPTER VIII

149

The stimuli that arouse movements of escape are of two sorts: those that
directly cause some irritating sensation, and those that are simply signs of
danger. The smaller avoiding reactions--flexion reflex, coughing, etc.--are
{143} aroused by stimuli that are directly painful or irritating; whereas
flight, cowering, etc., are mostly responses to mere signs of danger. A "sign
of danger" is usually seen or heard at some distance, not felt directly on or
in the body. Now, while avoiding reactions are attached by nature to the
irritating stimuli, it is not at all clear whether escape movements are
natively attached to any signs of danger, or, if they are, to what particular
signs of danger they are attached. What visual or auditory stimuli, that are
not directly irritating, will arouse escape movements in a young child? For
the youngest children, no such stimuli have been found. You can easily get
avoiding reactions from a little baby by producing pain or discomfort; you
can get the clinging response by letting the child slip when he is being held
in your arms; and you get crying and shrinking on application of a loud,
grating noise, such a noise as is irritating in itself without regard to what it
may signify. But you cannot get any shrinking from stimuli that are not
directly irritating.
For example, you get no sign of fear from a little child on suddenly
confronting him with a furry animal. With older children, you do get
shrinking from animals, but it is impossible to be sure that the older child
has not learned to be afraid of them. I have seen a child of two years simply
laugh when a large, strange dog came bounding towards him in the park;
but a year later he would shrink from a strange dog. Whence the change?
There are two possibilities: either a native connection between this
stimulus and the shrinking response only reached its maturity when the
child was about three years old--and there is nothing improbable in this--or
else the child, though actually never bitten by a dog, had been warned
against dogs by his elders or had observed his elders shrinking from dogs.
Children do pick up fears in this way; for example, children who are {144}
naturally not the least bit afraid of thunder and lightning may acquire a
fear of them from adults who show fear during a thunderstorm.
On the whole, the danger-avoiding reactions are probably not linked by
nature to any special signs of danger. While the emotion of fear, the escape

CHAPTER VIII

150

impulse, and many of the escape movements are native, the attachment of
these responses to specific stimuli--aside from directly irritating stimuli--is
acquired. Fear we do not learn, but we learn what to fear.
Crying.
We have the best of evidence that this is a native reaction, since the baby
cries from birth on. He cries from hunger, from cold, from discomfort, from
pain, and, perhaps most of all, as he gets a little older, from being thwarted
in anything he has set out to do. This last stimulus gives the "cry of anger",
which baby specialists tell us sounds differently from the cries of pain and
of hunger. Still, there is so much in common to the different ways of crying
that we may reasonably suppose there is some impulse, and perhaps some
emotional state, common to all of them. The common emotion cannot be
anger, or hunger, or discomfort or pain. To name it grief or sorrow would
fit the crying of adults better than that of little children. The best guess is
that the emotional state in crying is the feeling of helplessness. The cry of
anger is the cry of helpless anger; anger that is not helpless expresses itself
in some other way than crying; and the same is true of hunger, pain and
discomfort. Crying is the reaction appropriate to a condition where the
individual cannot help himself--where he wants something but is powerless
to get it. The helpless baby sets up a wail that brings some one to his
assistance; that is the utility of crying, though the baby, at first, does not
have this result in view, but simply cries because he is hungry and helpless,
uncomfortable and {145} helpless, thwarted and helpless. The child cries
less as he grows older, because he learns more and more to help himself.
With the vocal element of crying goes movement of the arms and legs,
which also has utility in attracting attention; but what may be the utility of
shedding copious tears remains a mystery, in spite of several ingenious
hypotheses that have been advanced to explain it.
Fatigue, rest and sleep.
That fatigue, primarily an organic state, gives rise to fatigue sensations and
to a neural adjustment for rest--a disinclination to work any longer--and

CHAPTER VIII

151

that drowsiness is a somewhat different organic state that gives an
inclination to sleep--all this has been sufficiently set forth in earlier
chapters. Going to sleep is a definite act, an instinctive response to the
drowsy state. In the way of preparatory reactions, we find many interesting
performances in birds and mammals, such as the curling up of the dog or
cat to sleep, the roosting of hens, the standing on one leg of some birds;
and we see characteristic positions adopted by human beings, but do not
know how far these are instinctive and how far acquired. Closing the eyes
is undoubtedly a native preparatory reaction for sleep.
Like the other responses to organic needs, rest and sleep figure pretty
largely in the behavior of the adult, as in finding or providing a good place
to sleep. Certainly if fatigue and sleep could be eliminated, as some
over-enthusiastic workers have pretended to hope, life would be radically
changed.
Instinctive Responses to Other Persons
We are next to look for action and emotion aroused by persons,
specifically--not by persons and things alike. Fear can be aroused by
persons, but also by things. In a social animal, such as man, almost any
instinct comes to have {146} social bearings. Eating and drinking become
social matters, and all the organic instincts figure in the placing and
making of a home. Home is a place of shelter against heat and cold, it is a
refuge from danger, it is where you eat and where you sleep. It meets all
these organic needs but--it is specially where "your people" are.
Home is a place where unlike persons foregather, male with female, adults
with children, and thus it symbolizes the "family instincts", mating and
child-care, which are responses to persons unlike in sex or age. But home
also illustrates very well the herd instinct, which is a response to like
persons, "birds of a feather flocking together". It is not the single home that
illustrates this, but the almost universal grouping of homes into villages or
cities.
The herd instinct or gregarious instinct.

CHAPTER VIII

152

It might be argued that a city or village was the result of economic causes,
or, in the olden days, a means of protection against enemies, and not a
direct satisfaction of any instinct in man to flock together. But often a
family who know perfectly well that their economic advantage demands
their remaining where they are, in some isolated country spot, will pull up
stakes and accept an inferior economic status in the city, just because the
country is too lonely for them. One woman, typical of a great many,
declined to work in a comfortable and beautiful place in the country,
because "she didn't want to see trees and rocks, she wanted to see people".
There is no doubt that man belongs by nature with the deer or wolf rather
than with solitary animals such as the lion. He is a gregarious creature.
The gregarious instinct does not by any manner of means account for all of
man's social behavior. It brings men together and so gives a chance for
social doings, but these doings are learned, not provided ready-made by
the instinct. About all we can lay to the herd instinct is uneasiness when
{147} alone, seeking company, remaining in company, and following the
rest as they move from place to place. The feeling of loneliness or
lonesomeness goes with being alone, and a feeling of satisfaction goes with
being in company.
Probably there is one more fact that belongs under the herd instinct. A
child is lonely even in company, unless he is allowed to participate in what
the others are doing. Sometimes you see an adult who is gregarious but not
sociable, who insists on living in the city and wishes to see the people, but
has little desire to talk to any one or to take part in any social activities;
but he is the exception. As a rule, people wish not only to be together but to
do something together. So much as this may be ascribed to the instinct, but
no more. "Let's get together and do something"--that is as far as the
gregarious instinct goes. What we shall do depends on other motives, and
on learning as well as instinct.
The mating instinct.
Attraction towards the opposite sex is felt by a small number of children, by
most young people beginning from 15 to 20 years of age, by a minority not

CHAPTER VIII

153

till a few years later, and, by a small number, never at all. On account of
the late maturing of this instinct, in man, instinctive behavior is here
inextricably interwoven with what has been learned. A definite organic and
emotional state, lust, goes with this instinct. Preparatory reactions, called
"courtship", are very definitely organized in many animals, and often quite
elaborate. In man, courtship is elaborate enough, but not definitely
organized as an instinct; and yet it follows much the same line as we
observe in animal courtship. It begins with admiring attention to one of the
opposite sex, followed by efforts to attract that one's attention by "display"
(strutting, decoration of the person, demonstrating one's prowess,
especially in opposition to rivals). Then the male takes an aggressive
attitude, the {148} female a coy attitude; the male woos, the female hangs
back, and something analogous to pursuit and capture takes place, except
that the capture may be heartily accepted by both parties.
The "survival value" of this instinct is absolute; without it the race would
not long survive. But it has "play value" also, it contributes to the joy of
living as well as to the struggle for survival. There is much in social
intercourse, and in literature and art, that is motivated by the sex impulse.
Some would-be psychologists have been so much impressed by the wide
ramifications of the sex motive in human conduct that they have attributed
to it all play, all enjoyment, all the softer and lighter side of life, even all
the spiritual side of life. One need only run over the long list of instincts,
especially those that still remain to be mentioned, in order to be convinced
of the one-sidedness of such a view. On the other hand, some moralists
have been so deeply impressed by the difficulties that arise out of the sex
motive, as to consider it essentially gross and bad; but this is as false as the
other view. The sex impulse is like a strong but skittish horse that is
capable of doing excellent work but requires a strong hand at the reins and
a clear head behind. It is a horse that does not always pull well in a team;
yet it is capable of fine teamwork. It can be harnessed up with other
tendencies, and when so combined contribute some of its motive force to
quite a variety of human activities.
The parental or mothering instinct.

CHAPTER VIII

154

In many species of animals, though not by any means in all, one or both of
the parents stays by the young till some degree of maturity is reached. In
some kinds of fish, it is the male that cares for the young; in birds it is often
both parents. In mammals it is always the mother. Instinctively, the
mammalian mother feeds, warms and defends her young. Just as {149}
instinctively, the human mother does the same. This instinctive reaction to
the little baby is attended by a strong emotion, called, for want of a better
name, the "tender emotion".
The strongest stimulus to arouse this instinct is the little, helpless baby. The
older child has to take second place with the mother, so soon as there is a
little baby there. After a child is weaned, and after he is able to get about
and do for himself to quite an extent, he has less hold on the maternal
instinct. The love and care that he may still get is less a simple matter of
instinct.
Though the little baby is the strongest stimulus to this instinct, older
children and even adults, provided they are like the baby in being winsome
and helpless in some way, may arouse the same sort of feeling and
behavior, tender feeling and protective behavior. A pet animal may arouse
the same tendency, and a "darling little calf" or a "cute little baby
elephant" may awaken something of the same thrill. Even a young plant
may be tended with a devotion akin to the maternal. The fact seems to be
here, as with other instincts, that objects similar to the natural stimulus
may arouse the same impulse and emotion. Love between the sexes is often
a compound of sex attraction and the mothering instinct; and it is
interesting to watch a happily mated couple each mothering the other.
But is it allowable to speak of this instinct as present in the male human
being, or in any one not a mother? Undoubtedly the woman who has
recently become a mother is most susceptible to the appeal of a little baby,
but the response of other women and of girls to a baby is so spontaneous
that we cannot but call it instinctive. Men and boys have no special desire
to feed or cuddle a little baby, and are quite contented to leave the care of
the baby mostly to the "women folks". But they do object strongly to seeing
the {150} baby hurt or ill-treated, and will respond by protecting it. Also,

CHAPTER VIII

155

they like to watch the baby act, and like to help it along in its efforts to do
things. This may be instinctive in the man; at least it reminds us of the
behavior of a mother cat or dog or horse, when she plays with her young
and stimulates them to action. When the mother cat brings a live mouse for
her half-grown kittens to practise on, she is acting instinctively, and
probably a man is obeying the same instinct when he brings the baby a toy
and derives pleasure from watching the baby's attempts to use it.
The parental instinct would thus seem to lie at the root of education,
considered as an enterprise of adults directed towards getting the young to
acquire the behavior of the race; and it also lies at the root of charity, the
desire to protect the helpless.
Is there any instinct in the child answering to the parental, any "filial"
instinct, as it were? Psychologists have usually answered no, but possibly
they have been misled by the word "filial" and looked in the wrong
direction. The parental instinct is an instinct to give, and the answering
instinct would be one to take--not to give in return. It is probably not
instinctive for the child to do for the parent, but is it not instinctive for the
child to take from the parent, and to look to the parent for what he wants?
It is not exactly "unnatural conduct" in a child to impose on his mother, as
it would be in the mother to impose on the child; but would it not be
unnatural in a child to take an unreceptive and distrustful attitude towards
his mother?
Filial love is different. It is not purely instinctive, but depends on
intelligence. It is only possible if the child has the intelligence to see the
parent as something besides a parent--as some one needing care and
protection--and if the child himself takes a parental attitude towards the
parent. But that is a grown-up attitude, seldom taken by {151} young
children. It is not the infantile instinct, which, if there is such an instinct, is
the spring of trustful, docile, dependent, childlike and childish behavior.
The Play Instincts

CHAPTER VIII

156

Any instinct has "play value", but some have also "survival value" and so
are serious affairs. Survival value characterizes the instincts we have
already listed, both the responses to organic needs and the responses to
other people. But there are other instincts with less of survival value, but no
less of play value, and these we call the play instincts, without attaching
any great importance to the name or even to the classification.
Playful activity.
The kicking and throwing the arms about that we see in a well-rested baby
is evidently satisfying on its own account. It leads to no result of
consequence, except indeed that the exercise is good for the child's muscles
and nerves. The movements, taken singly, are not uncoordinated by any
means, but they accomplish no definite result, produce no definite change
in external objects, and so seem random and aimless to adult eyes. It is
impossible to specify the stimulus for any given movement, though probably
stimuli from the interior of the body first arouse these responses. They are
most apt to occur during the organic state of "euphoria", and tend to
disappear during fatigue.
There is a counter-tendency to this tendency towards general activity, and
that is inertia, the tendency towards inactivity or economy of effort. Most
pronounced in fatigue, this also appears in lassitude and inert states that
cannot be called fatigue because not brought on by excessive activity. After
sleep, many people are inert, and require a certain amount of activity to
"warm up" to the active condition. As the child grows older, the {152}
"economy of effort" motive becomes stronger, and the random activity
motive weaker, so that the adult is less playful and less responsive to slight
stimuli. He has to have some definite goal to get up his energy, whereas the
child is active by preference and just for the sake of activity.
During the first year or so of the child's life, his playful activity takes shape
in several ways. First, out of the great variety of the random movements
certain ones are picked out and fixed. This is the way with putting the hand
into the mouth or drumming on the floor with the heels, and these instances
illustrate the important fact that many learned acts develop out of the

CHAPTER VIII

157

child's random activity. Without play activity there would be little work or
accomplishment of the distinctively human type. Second, certain specific
movements, those of locomotion and vocalization, appear with the ripening
of the child's native equipment, and take an important place in his play.
Third, his play comes to consist more and more of responses to external
objects, instead of to internal stimuli as at first. The playful responses to
external objects fall into two classes, according as they manipulate objects
or simply examine them.
We have, then, a small group of instincts that is very closely related to the
fundamental instinct of random activity.
Locomotion.
Evidence has already been presented [Footnote: See p. 95.] indicating that
walking is instinctive and not learned, so that the human species is no
exception to the rule that every species has its instinctive mode of
locomotion. Simpler performances which enter into the very complex
movement of walking make their appearance separately in the infant before
being combined into walking proper. Holding up the head, sitting up,
kicking with an alternate motion of the {153} two legs, and creeping,
ordinarily precede walking and lead up to it.
What is the natural stimulus to locomotion? It is as difficult to say as it is to
specify the stimulus in other forms of playful activity. From the fact that
blind children are usually delayed in beginning to walk, we judge that the
sense of sight furnishes some of the most effective stimuli to this response.
Often the impulse attending locomotion is the impulse to approach some
seen object, but probably some satisfaction is derived simply from the free
movement itself. There certainly is no special emotion going with
locomotion. Locomotion has, of course, plenty of "survival value", and
might have been included among the organic instincts.
Some of the other varieties of human locomotion, such as running and
jumping, are probably native. Others, like hopping and skipping, are
probably learned. As to climbing, there is some evolutionary reason for

CHAPTER VIII

158

suspecting that an instinctive tendency in this direction might persist in the
human species, and certainly children show a great propensity for it; while
the acrobatic ability displayed by those adults whose business leads them to
continue climbing is so great as to raise the question whether the ordinary
citizen is right when he thinks of man as essentially a land-living or
surface-living animal. As to swimming, the theory is sometimes advanced
that this too is a natural form of locomotion for man, and that,
consequently, any one thrown into deep water will swim by instinct.
Experiments of this sort result badly, the victim clutching frantically at any
support, and sometimes dragging down with him the theorist who is
administering this drastic sort of education. In short, the instinctive
response of a man to being in deep water is the same as in other cases of
sudden withdrawal of solid support; it consists in clinging and is attended
by the emotion of fear.
{154}
Vocalization.
Crying at birth proves voice-production to be a native response, but we are
more interested just here in the playful cooing and babbling that appear
when the child is a few weeks or months old. This cheerful vocalization is
also instinctive, in all probability, since the baby makes it before he shows
any signs of responding imitatively to the voices of other people. It seems to
be one form of the random activity that goes with euphoria. The child
derives satisfaction not so much from the muscular activity of vocalization
as from the sounds that he produces, so that deaf children, who begin to
babble much like other children, lag behind them as the months go by, from
not deriving this auditory satisfaction from the vocal activity. Though
whistling, blowing a horn, shaking a rattle and beating a drum are not
native responses, it is clear that the child naturally enjoys producing
sounds of various sorts.
The baby's cheerful babbling is the instinctive basis on which his speech
later develops through a process of learning.

CHAPTER VIII

159

Manipulation.
While the first random activity of the baby has nothing to do with external
objects, but simply consists of free movements of the arms and legs, after a
time these give place to manipulation of objects. The baby turns things
about, pulls and pushes them, drops them, throws them, pounds with them.
Thus he acquires skill in handling things and also learns how things
behave. This form of playful activity contains the germ of constructiveness
and of inventiveness, and will come into view again under the head of
"imagination."
Exploration or curiosity.
Along with manipulation goes the examination of objects by the hand, the
mouth, the eyes and ears, and all the senses. Listening to a sudden noise is
one of the first exploratory reactions. Following a moving light with the
eyes, fixing the eyes upon a {155} bright object, and exploring an object
visually by looking successively at different parts of it, appear in the first
few months of the baby's life. Exploration by the hands and by the mouth
appear early. Sniffing an odor is a similar exploratory response. When the
child is able to walk, his walking is dominated largely by the exploring
tendency; he approaches what arouses his curiosity, and embarks on little
expeditions of exploration. Similar behavior is seen in animals and is
without doubt instinctive. With the acquisition of language, the child's
exploration largely takes the form of asking questions.
The stimulus that arouses this sort of behavior is something new and
unfamiliar, or at least relatively so. When an object has been thoroughly
examined, it is dropped for something else. It is when the cat has just been
brought into a strange house that she rummages all over it from garret to
cellar. A familiar object is "taken for granted", and arouses little
exploratory response.
Quite a group of conscious impulses and emotions goes with exploratory
behavior. The feeling or impulse of curiosity is something that everybody
knows; like other impulses, it is most strongly felt when the end in view

CHAPTER VIII

160

cannot be immediately reached. When you are prevented by considerations
of propriety or politeness from satisfying your curiosity, then it is that
curiosity is most "gnawing". A very definite emotion that occurs on
encountering something extremely novel and strange is what we know as
"surprise", and somewhat akin to this is "wonder".
Exploration, though fundamentally a form of playful activity, has great
practical value in making the child acquainted with the world. It contains
the germ of seeking for knowledge. We shall have to recur to this instinct
more than once, under the head of "attention" and again under
"reasoning".
{156}
Manipulation and exploration go hand in hand and might be considered as
one tendency rather than two. The child wishes to get hold of an object,
that arouses his curiosity, and he examines it while handling it. You cannot
properly get acquainted with an object by simply looking at it, you need to
manipulate it and make it perform; and you get little satisfaction from
manipulating an object unless you can watch how it behaves.
Tendencies running counter to exploration and manipulation.
Just as playful activity in general is limited by the counter tendencies of
fatigue and inertia, so the tendency to explore and handle the unfamiliar is
held in check by counter tendencies which we may call "caution" and
"contentment".
Watch an animal in the presence of a strange object. He looks at it, sniffs,
and approaches it in a hesitating manner; suddenly he runs away for a
short distance, then faces about and approaches again. You can see that he
is almost evenly balanced between two contrary tendencies, one of which is
curiosity, while the other is much like fear. It is not full-fledged fear, not so
much a tendency to escape as an alertness to be ready to escape.

CHAPTER VIII

161

Watch a child just introduced to a strange person or an odd-looking toy.
The child seems fascinated, and can scarcely take his eyes from the novel
object, but at the same time he "feels strange", and cannot commit himself
heartily to getting acquainted. There is quite a dose of caution in the child's
make-up--more in some children than in others, to be sure--with the result
that the child's curiosity gets him into much less trouble than might be
expected. Whether caution is simply to be identified with fear or is a
somewhat different native tendency, it is certainly a check upon curiosity.
By "contentment" we mean here a liking for the familiar, {157} which
offsets to some extent the fascination of the novel. If you are perfectly
contented, you are not inclined to go out exploring; and when you have had
your fill of the new and strange, you like to get back to familiar
surroundings, where you can rest in content. Just as playful behavior of all
sorts decreases with increasing age, so the love for exploring decreases,
and the elderly person clings to the familiar. But even children may insist
in occupying their own particular chair, on eating from a particular plate,
and on being sung to sleep always with the same old song. They are "little
creatures of habit", not only in the sense that they readily form habits, but
in the sense that they find satisfaction in familiar ways and things. Here we
see the germ of a "conservative" tendency in human nature, which
balances, to a greater or less extent, and may decidedly overbalance, the
"radical" tendency of exploration.
Laughter.
We certainly must not omit this from our list of instincts, for, though it does
not appear till some time after birth, it has all the earmarks of an
instinctive response. If it were a learned movement, it could be made at
will, whereas, as a matter of fact, few people are able to produce a
convincing laugh except when genuinely amused, which means when the
instinctive tendency to laugh is aroused by some appropriate stimulus. The
emotion that goes with laughing may be called mirth or amusement, and it
is a strongly impulsive state of mind, the impulse being simply to laugh,
with no further end in view.

CHAPTER VIII

162

The most difficult question about laughter is to tell in general psychological
terms what is the stimulus that arouses it. We have several ingenious
theories of humor, which purport to tell; but they are based on adult
humor, and we have as yet no comprehensive genetic study of laughter,
tracing it up from its beginnings in the child. Laughing certainly belongs
with the play instincts, and possibly the {158} stimulus is no more definite,
at first, than that which arouses other playful activity. The baby seems to
smile, at first, just from good spirits (euphoria). The stimuli that, a little
later, arouse a burst of laughter have an element of what we may call
"expected surprise" (as dropping a rattle and exploding with laughter when
it bangs on the floor, and keeping this up time after time), and this element
can still be detected in various forms of joke that are effective
mirth-provokers in the adult. But why the child should laugh when tickled,
at the same time trying to escape, is a poser. Many students of humor have
subscribed to the theory that what makes us laugh is a sudden sense of our
own superiority, thus attaching laughter to the self-assertive instinct, soon
to be discussed. The laugh of victory, the laugh of defiance, the laugh of
mockery, the sly or malicious laugh, support this theory, but can it be
stretched to cover the laugh of good humor, the tickle laugh, or the baby's
laugh in general? That seems very doubtful, and we must admit that we do
not know the essential element in a laughter stimulus. One thing is fairly
certain: that, while laughing is a native response, we learn what to laugh
at, for the most part, just as we learn what to fear.
Fighting.
Hold the new-born infant's arms tightly against its sides, and you witness a
very peculiar reaction: the body stiffens, the breath may be held till the face
is "red with anger"; the child begins to cry and then to scream; the legs are
moved up and down, and the arms, if they can be got free, make striking or
slashing movements. In somewhat older children, any sort of restraint or
interference with free movement may give a similar picture, except that the
motor response is more efficient, consisting in struggling, striking, kicking,
and biting. It is not so much pain as interference that gives this reaction.
You get it if you take away a toy the child is playing with, or if you forbid
{159} the child to do something he is bent on doing. In animals, the fighting

CHAPTER VIII

163

response is made to restraint, to being attacked, or to being interfered with
in the course of feeding, or mating, or in the instinctive care of the young.
The mother lioness, or dog or cat or hen, is proverbially dangerous; any
interference with the young leads to an attack by the mother. The human
mother is no exception to this rule. In human adults, the tendency to fight is
awakened by any interference with one's enterprises, by being insulted or
got the better of or in any way set down in one's self-esteem.
In general, the stimulus to fighting is restraint or interference. Let any
reaction-tendency be first aroused and then interfered with, and
pugnacious behavior is the instinctive result.
The stimulus may be an inanimate object. You may see a child kick the door
viciously when unable to open it; and grown-ups will sometimes tear, break
or throw down angrily any article which they cannot make do as they wish.
A bad workman quarrels with his tools. Undoubtedly, however,
interference from other persons is the most effective stimulus.
The impulse so aroused is directed primarily towards getting rid of the
restraint or interference, but also towards inflicting damage on the
opponent; and with this impulse often goes the stirred-up organic and
emotional state of anger. As brought out in the chapter on emotion, the
organic state in anger is nearly or quite identical with that in fear of the
active type; and the two states of the individual differ in respect to impulse
rather than in respect to emotion. In fear, the impulse is to get away from
the adversary, in anger to get at him. The emotion of anger is not always
aroused in fighting, for sometimes there is a cold-blooded desire to damage
the adversary.
The motor response, instinctively consisting of struggling, kicking, etc., as
already described, becomes modified {160} by learning, and may take the
form of scientific fistwork, or the form of angry talk, favored by adults. Or,
the adversary may be damaged in his business, in his possessions, in his
reputation, or in other indirect ways. The fighting spirit, the most
stimulating of the emotions, gives energy to many human enterprises, good
as well as bad. The successful reformer must needs be something of a

CHAPTER VIII

164

fighter.
Thus far we have said nothing to justify our placing fighting here among
the play instincts. Fighting against attack has survival value, fighting to
protect the young has survival value, and, in general, the defensive sort of
fighting has survival value, even though interference with play activity is
just as apt to give this response as interference with more serious activities.
But there is more than this to the fighting instinct. The stimulus of
interference is not always required. Consider dogs. The mere presence of
another dog is often enough to start a scrap, and a good fighting dog will
sally forth in search of a fight, and return considerably mauled up, which
does not improve his chances for survival, to say the least. Fighting of this
aggressive sort is a luxury rather than a necessity. It has play value rather
than survival value. There can be no manner of doubt that pugnacious
individuals, dogs or men, get more solid satisfaction from a good fight than
from any other amusement. You see people "itching for a fight", and
actually "trying to pick a quarrel", by provoking some other person who is
strictly minding his own business and not interfering in the least. A battle of
words usually starts in some such way, with no real reason, and a battle of
words often develops into a battle of tooth and nail. Two women were
brought before the judge for fighting, and the judge asked Mrs. Smith to tell
how it started. "Well, it was this way, your honor. I met Mrs. Brown
carrying a basket on her arm, and I says {161} to her, 'What have ye got in
that basket?' says I. 'Eggs', says she. 'No!' says I. 'Yes!' says she. 'Ye lie!'
says I. 'Ye lie!' says she. And a 'Whoop!' says I, and a 'Whoop!' says she;
and that's the way it began, sir."
We have, then, to recognize aggressive fighting, in addition to defensive,
and the aggressive sort certainly belongs among the play instincts.
The instincts that by acting counter to fighting hold it in check are several:
laughter--a good laugh together allays hostility; or the parental instinct--a
parent will stand treatment from his child that he would quickly resent from
any one else; or self-assertion--"Too proud to fight!" But the most direct
checks are afforded by inertia--"What's the use?"--and especially by fear

CHAPTER VIII

165

and caution.
Fighting, both defensive and aggressive, has so close a connection with the
more generalized self-assertive tendency that it might be included under
that instinct. It may be regarded as a special form of self-assertive
behavior, often complicated with the emotion of anger.
Self-assertion.
What then is this wonderful instinct of self-assertion, to which fighting and
much of laughing are subordinate? "Assertiveness", "masterfulness", and
the "mastery impulse" are alternative names. Of all the native tendencies,
this is the one most frequently aroused, since there is scarcely a moment of
waking (or dreaming) life when it is not more or less in action. It is so
much a matter of course that we do not notice it in ourselves, and often not
in other persons; and even clever psychological observers have seemed
entirely blind to it, and given it no place in their list of instincts.
Self-assertion, like fighting, has two forms, the defensive and the
aggressive, and in either case it may be a response to either people or
things. That gives four varieties of self-assertive behavior, which may be
labeled as follows:
{162}
1. Defensive reaction to things, overcoming obstruction, putting through
what has been undertaken--the success motive.
2. Defensive reaction to persons, resisting domination by them--the
independence motive.
3. Aggressive reaction to things--seeking for power.
4. Aggressive reaction to persons--seeking to dominate. We will take these
up in order, beginning with the most elemental.

CHAPTER VIII

166

1. Overcoming obstruction. The stimulus here is much the same as that
which induces fighting, but the response is simpler, without anger and
without the impulse to do damage. Take hold of a baby's foot and move it
this way or that, and you will find that the muscles of the leg are offering
resistance to this extraneous movement. Obstruct a movement that the baby
is making, and additional force is put into the movement to overcome the
obstruction. An adult behaves in a similar way. Let him be pushing a
lawn-mower and encounter unexpected resistance from a stretch of tough
grass; involuntarily he pushes harder and keeps on going--unless the
obstruction is too great. Let him start to lift something that is heavier than
he thinks; involuntarily he "strains" at the weight, which means that a
complex instinctive response occurs, involving a rigid setting of the chest
with holding of the breath, and increased muscular effort. This instinctive
reaction may be powerful enough to cause rupture.
Other than purely physical resistance is overcome by other self-assertive
responses. When the child's toy will not do what he wants it to do, he does
not give up at once, but tries again and puts more effort into his
manipulation. When, in school, he is learning to write, and finds difficulty
in producing the desired marks, he bends over the desk, twists his foot
round the leg of his chair, screws up his face, {163} and in other ways
reveals the great effort he is making. An adult, engaged in some piece of
mental work, and encountering a distraction, such as the sound of the
phonograph downstairs, may, of course, give up and listen to the music,
but, if he is very intent on what he is doing, he puts more energy into his
work and overcomes the distraction. When he encounters a baffling
problem of any sort, he does not like to give it up, even if it is as
unimportant as a conundrum, but cudgels his brains for the solution. As a
general proposition, and one of the most general propositions that
psychology has to present, we may say that obstruction of any sort,
encountered in carrying out any intention whatever, acts as a stimulus to
the putting of additional energy into the action.
Anger is often aroused by obstruction, but anger does not develop a tenth
as often, in the course of the day, as the plain overcoming reaction. The
impulse is not to do damage, but to overcome the obstruction and do what

CHAPTER VIII

167

we have set out to do. The emotional state might sometimes be called
"determination", sometimes "zeal"; but the most elementary state belonging
here is effort. The feeling of effort is, partly at least, a sensation complex
resulting from stiffening the trunk and neck, knitting the brows, and other
muscular strains that have practical utility in overcoming physical
resistance and that are carried over to the overcoming of other sorts of
resistance, where they have no obvious utility. Effort is a simpler emotion
than anger, and occurs much more frequently.
2. Resisting domination by other persons. The child shows from an early
age that he "has a will of his own", and "wants his own way" in opposition
to the commands of other persons. There is an independent spirit in man
that is native rather than acquired. The strength of this impulse differs, to
be sure, in different individuals, some {164} children being more
"contrary" and others more docile; but there probably never was a child
without a good dose of disobedience in his make-up. In order to have a
nice, obedient child, you have to "break" him like a colt, though you can
use reason as well as force in breaking a child. This process of "breaking"
gives a habit of obedience to certain persons and along certain lines; but,
outside of these limits, the child's independence is still there and ready to
be awakened by any attempt to dominate him. In youth, with the sense of
power that comes from attaining adult stature and muscular strength, the
independent spirit is strengthened, with the result that you seldom see a
youth, or an adult, who can take orders without at least some inner
opposition and resentment.
3. Seeking for power over things. The self-assertive response to things is
not limited to overcoming the obstructions offered by things to the
accomplishment of our purposes; but we derive so much positive
satisfaction from overcoming obstruction and mastering things that we go
out in search of things to master. The child's manipulation has an element
of masterfulness in it, for he not only likes to see things perform, but he
likes to be the one that makes them perform. If he has a horn, he is not
satisfied till he can sound it himself. The man with his automobile is in the
same case. When it balks, he is stimulated to overcome it; but when it runs
smoothly for him, he has a sense of mastery and power that is highly

CHAPTER VIII

168

gratifying. Chopping down a big tree, or moving a big rock with a crowbar,
affords the same kind of gratification; and so does cutting with a sharp
knife, or shooting with a good bow or gun, or operating any tool or
machine that increases one's power. Quite apart from the utility of the
result accomplished, any big achievement is a source of satisfaction to the
one who has done it, because it gives play to aggressive self-assertion.
Many {165} great achievements are motived as much by the zest for
achievement as by calculation of the advantages to be secured.
4. Seeking to dominate other people. The individual not simply resists
domination by other people, but he seeks to dominate them himself. Even
the baby gives orders and demands obedience. Get a number of children
together, and you will see more than one of them attempt to be the leader in
their play. Some must necessarily be followers just now, but they will
attempt to take the lead on another occasion. The "born leader" is perhaps
one who has an exceptionally strong dose of masterfulness in his make-up,
but he is, still more, one who has abilities, physical or mental, that give him
the advantage in the universal struggle for leadership.
Besides giving orders and taking the lead, there are other ways in which
the child finds satisfaction for his instinct to dominate. Showing off is one,
bragging is one, doing all the talking is one; and, though in growing older
and mixing with people the child becomes less naive in his manner of
bragging and showing off, he continues even as an adult to reach the same
end in more subtle ways. Going about to win applause or social recognition
is a seeking for domination. Anything in which one can surpass another
becomes a means of self-assertion. One may demonstrate his superiority in
size, strength, beauty, skill, cleverness, virtue, good humor,
coöperativeness, or even humility, and derive satisfaction from any such
demonstration. The impulse to dominate assumes literally a thousand
disguises, more rather than less.
Rivalry and emulation, sometimes accorded a separate place in a list of the
instincts, seem well enough provided for under the general head of
self-assertion. They belong on the social side of assertive behavior, i.e.,
they are responses to other people and aim at the domination of other

CHAPTER VIII

169

{166} people or against being dominated by them. But the struggle for
mastery, in rivalry, does not take the form of a direct personal encounter.
Compare wrestling with a contest in throwing the hammer. In wrestling the
mastery impulse finds a direct outlet in subduing the opponent, while in
throwing the hammer each contestant tries to beat the other indirectly, by
surpassing him in a certain performance. This you would call rivalry, but
wrestling is scarcely rivalry, because the struggle for mastery is so direct.
Rivalry may seek to demonstrate superiority in some performance, or to
win the favor of some person or social group, as in the case of rivals in
love.
When we speak of "emulation", we have in mind the sort of behavior
observed when one child says, "See what I can do!" and the other counters
with, "Pooh! I can do that, too". Or, the first child wins applause by some
performance, and we then notice the second child attempting the same. It is
a case of resisting the indirect domination of another, by not letting him
surpass us in performance or in social recognition.
Thwarted self-assertion deserves special mention, as the basis for quite a
number of queer emotional states. Shame, sulkiness, sullenness,
peevishness, stubbornness, defiance, all go with wounded self-assertion
under different conditions. Envy and jealousy belong here, too. Shyness and
embarrassment go with self-assertion that is doubtful of winning
recognition. Opposed to all these are self-confidence, the cheerful state of
mind of one who seeks to master some person or thing and fully expects to
do so, and elation, the joyful state of one who has mastered.
Submission.
Is there any counter-tendency that limits self-assertion and holds it in
check? Inertia and fear of course have this effect, but is there any specific
instinct precisely opposite to self-assertion? A difficult question, not {167}
yet to be answered with any assurance; but there is some evidence of a
native submissive or yielding tendency. Two forms may be distinguished:
yielding to obstruction, and yielding to the domination of other persons.

CHAPTER VIII

170

Giving up, in the face of obstacles, is certainly common enough, but at first
thought we should say that the individual was passive in the matter, and
simply forced to yield, as a stone is brought to a stop when it strikes a wall.
In reality, giving up is not quite so passive as this. There is no external
force that can absolutely force us to give up, unless by clubbing us on the
head or somehow putting our reactive mechanism out of commission. As
long as our brain, nerves and muscles are able to act, no external force can
absolutely compel us to cease struggling. Since, then, we do cease
struggling before we are absolutely out of commission, our giving up is not
a purely passive affair, but our own act, a kind of reaction; and no doubt a
native reaction. Further, when struggling against a stubborn obstacle, we
sometimes feel an impulse to give up, and giving up brings relief.
The ability to give up is not a mere element of weakness in our nature, but
is a valuable asset in adapting ourselves to the environment. Adaptation is
called for when the reaction first and most naturally made to a given
situation does not meet the requirements of the situation. A too stubborn
assertiveness means persistence in this unsuitable reaction, and no
progress towards a successful issue; whereas giving up the first plan of
attack, and trying something else instead, is the way towards success. Some
people are too stubborn to be adaptable.
The docility of the child, who believes whatever is told him, has in it an
element of submissiveness. There is submissiveness also in the receptive
attitude appropriate in observation and forming opinions--the attitude of
looking for the facts and accepting them as they are rather than seeking
{168} to confirm one's own prepossessions. Bias is self-assertive,
impartiality is submissive to some degree.
Yielding to the domination of other persons often occurs unwillingly, and
then comes under the head of "thwarted self-assertion"; but the question is
whether it ever occurs willingly and affords satisfaction to the individual
who yields. We certainly yield with good grace to one who so far outclasses
us that competition with him is unthinkable. An adult may arouse the
submissive response in a child; and the social group, by virtue of its
superior power and permanence, may arouse it in the individual adult.

CHAPTER VIII

171

Hero worship seems a good example of willing submission, agreeable to
the one who submits. There are persons who are "lost" without a hero,
without some one to lean on, some one to tell them what to do and even
what to believe. This looks much like the "filial" or "infantile" instinct that
was mentioned before as a possibility, and the dependent spirit in an adult
possibly represents a continuation of the infantile attitude into adult life.
Some behavior that looks submissive is really self-assertion in disguise.
There are two forms of self-assertion that are specially likely to be taken
for submission. Wounded or thwarted self-assertion is one. Shame and envy
are like submission in this respect, that they involve an absence of
self-confidence or self-assurance, but they do not afford the satisfaction of
willing submission, nor the relief of giving up the struggle against
obstacles. So far from being genuinely submissive, they are states in which
the self is making a violent and insistent demand for justification or social
recognition. The other form of self-assertion which looks like submission
occurs when a person identifies himself with a superior individual or with a
social group. He will then boast of the prowess of his hero or of the
prestige of his group, whether it be his family, his school, {169} his town or
his country. Now, boasting cannot by any stretch of the imagination be
regarded as a sign of submissiveness; it is a sign of assertiveness, and
nothing else. What has happened here is that the individual, having
identified himself with his hero or his group, finds in their greatness a
means of asserting himself as against other individuals who have not the
good fortune to be so identified. This transferred self-assertion is a strong
element in loyalty and public spirit, and plays a large and useful part in
public affairs.
{170}
EXERCISES
1. Make an outline of the chapter, in the form of a table, which shall show
for each instinct: (a) the natural stimulus, (b) the native motor response, (c)
the end-result that the instinct tends towards, in its adult as well as its
native condition, and (d) the emotion, if any, that goes with the activity of

CHAPTER VIII

172

the instinct.
2. An adult tendency or propensity may be simply an unmodified instinct, or
it may be derived from instincts by combination, etc. Try to identify each of
the following as an instinct, or to analyze it into two or more instincts:
(a) Love for adventure. (b) Patriotism. (c) A father's pride in his children.
(d) Love for travel. (e) Insubordination. (f) Love for dancing.
3. Which of the instincts are most concerned in making people work?
4. Show how self-assertion finds gratification in the life-work of
an actor. a physician. a housekeeper. a teacher. a railroad engineer.
5. Arrange the following impulses and emotions in the order of the
frequency of their occurrence in your ordinary day's work and play:
(a) Fear. (b) Anger. (c) Disgust (d) Curiosity. (e) Self-assertion. (f)
Submission. (g) The tendency to protect or "mother" another.
6. How do "practical jokes" lend support to the view that laughter is
primarily aroused by a sense of one's own superiority?
7. Get together a dozen jokes or funny stories, and see how many of them
can be placed with the practical jokes in this respect.
8. Mention some laughter-stimuli that do not lend support to the theory
mentioned in Exercise 6.
9. What instincts find outlet in (a) dress, (b) automobiling, (c) athletics, (d)
social conversation?
{171}
REFERENCES

CHAPTER VIII

173

McDougall's Social Psychology gives, in Chapters III and IV, an inventory
of the instinctive equipment of mankind, and in Chapter V attempts to
analyze many complex human emotions and propensities into their native
elements.
Thorndike, in his Educational Psychology, Briefer Course, 1914,

Chapters

174

Chapters
, II-V, attempts a more precise analysis of stimulus and response.
Watson's Psychology from the Standpoint of a Behaviorist, 1919, attempts
in Chapter VI to show that there are only three primary emotions, fear,
rage and love; and in Chapter VII gives a critical review of the work on
human instincts.
H. C. Warren, in Chapter VI of his Human Psychology, 1919, gives a brief
survey of the reflexes and instincts.
{172}

CHAPTER IX

175

CHAPTER IX
THE FEELINGS
PLEASANTNESS AND UNPLEASANTNESS, AND OTHER STATES OF
FEELINGS AND THEIR INFLUENCE UPON BEHAVIOR
Feeling is subjective and unanalyzed. It is conscious, and an "unconscious
feeling" would be a contradiction in terms. But, while conscious, it is not
cognitive; it is not "knowing something", even about your subjective
condition; it is simply "the way you feel". As soon as you begin to analyze
it, and say, "I feel badly here or there, in this way or in that", you know
something about your subjective condition, but the feeling has evaporated
for the instant. In passing over into definite knowledge of facts, it has
ceased to be feeling.
Feeling is an undercurrent of consciousness, or we might call it a
background. The foreground consists of what you are taking notice of or
thinking about, or of what you are intending to do; that is to say, the
foreground is cognitive or impulsive, or it may be both at once, as when we
are intent on throwing this stone and hitting that tree. In the background
lies the conscious subjective condition. Behind facts observed and acts
intended lies the state of the individual's feeling, sometimes calm,
sometimes excited, sometimes expectant, sometimes gloomy, sometimes
buoyant.
The number of different ways of feeling must be very great, and it would be
no great task to find a hundred different words, some of them no doubt
partly synonymous, to complete the sentence, "I feel _____". All the {173}
emotions, as "stirred-up states of mind", belong under the general head of
the feelings.
But when the psychologist speaks of the feelings, he usually means the
elementary feelings. An emotion is far from elementary. If you accept the
James-Lange theory, you think of an emotion as a blend of organic
sensations; and if you reject that theory, you would still probably agree

CHAPTER IX

176

that such an emotion as anger or fear seems a big, complex state of feeling.
It seems more complex than such a sensation as red, warm, or bitter, which
are called elementary sensations because no one has ever succeeded in
decomposing them into simpler sensations. Now, the question is whether
any feelings can be indicated that are as elementary as these simple
sensations.
Pleasantness and Unpleasantness Are Simple Feelings
No one has ever been able to break up the feelings of pleasantness and
unpleasantness into anything simpler. "Pleasure" and "displeasure" are not
always so simple; they are names for whole states of mind which may be
very complex, including sensations and thoughts in addition to the feelings
of pleasantness and unpleasantness. "Pain" does not make a satisfactory
substitute for the long word "unpleasantness", because "pain", as we shall
see in the next chapter, is properly the name of a certain sensation, and
feelings are to be distinguished from sensations. Red, warm and bitter,
along with many others, are sensations, but pleasantness and
unpleasantness are not sensations.
How, then, do the elementary feelings differ from sensations? In the first
place, sensations submit readily to being picked out and observed, and in
fact become more vivid when they are brought into the "foreground", while
feelings grow vague and lose their character when thus singled {174} out
for examination. Attend to the noises in the street and they stand out
clearly, attend to the internal sensation of breathing and it stands out
clearly, but attend to your pleasant state of feeling and it retreats out of
sight.
In the second place, sensations are "localized"; you can tell pretty well
where they seem to come from. Sensations of light, sound and smell are
localized outside the body, sensations of touch are localized on the skin (or
sometimes outside), taste sensations are localized in the mouth, organic
and muscular sensations in some part of the body. On the other hand,
pleasantness and unpleasantness are much less definitely localized; they
seem to be "in us", without being in any special part of us.

CHAPTER IX

177

In the third place, feelings differ from sensations in having no known sense
organs. There is no special sense organ or set of sense organs for the
feeling of pleasantness or unpleasantness, as there is for warmth or cold.
Some sensations are pleasant, to be sure, and some unpleasant; but there is
no one kind of sense organ that has the monopoly of either sort of feeling.
Feeling-Tone of Sensations
The pleasantness or unpleasantness characteristic of many sensations is
called their "feeling-tone", and sensations that are markedly pleasant or
unpleasant are said to have a strong or pronounced feeling-tone. Bitter is
intrinsically unpleasant, sweet pleasant, the salty taste, when not too
strong, neither one nor the other, so that it has no definite feeling-tone.
Odors, as well as tastes, usually have a rather definite feeling-tone. Of
sounds, smooth tones are pleasant, grating noises unpleasant. Bright colors
are pleasant, while dull shades are sometimes unpleasant, sometimes
merely indifferent or lacking in feeling-tone. Pain is usually unpleasant,
moderate warmth and cold pleasant, simple touch {175} indifferent. Very
intense sensations of any kind are likely to be unpleasant.
The statements made above as to the subjectivity and non-localization of
feeling do not apply altogether to the feeling-tone of sensations. The
pleasantness or unpleasantness of a sensation is localized with the
sensation and seems to belong to the object rather than to ourselves. The
unpleasantness of a toothache seems to be in the tooth rather than simply
"in us". The pleasantness of a sweet taste is localized in the mouth, and we
even think of the sweet substance as being objectively pleasant. We say that
it is a "pleasant day", and that there is a "pleasant tang in the air", as if the
pleasantness were an objective fact.
By arguing with a person, however, you can get him to admit that, while the
day is pleasant to him, and the tang in the air pleasant to him, they may be
unpleasant to another person; and he will admit that a sweet substance,
ordinarily pleasant, is unpleasant when he has had too much of sweet
things to eat. So you can make him realize that pleasantness and
unpleasantness depend on the individual and his condition, and are

CHAPTER IX

178

subjective rather than objective. Show a group of people a bit of color, and
you will find them agreeing much better as to what color that is than as to
how pleasant it is. Feeling-tone is subjective in the sense that people
disagree about it.
Theories of Feelings
1. Pleasantness might represent a general organic state, and
unpleasantness the contrary state, each state being an internal bodily
response to pleasant or unpleasant stimuli, and making itself felt as an
unanalyzable compound of vague internal sensations.
This theory of feeling is certainly attractive, and it would {176} account
very well for all the facts so far stated, for the subjectivity of feeling, for its
lack of localization, and for the absence of specific sense organs for the
feelings. It would bring the feelings into line with the emotions. But the real
test of the theory lies just here: can we discover radically different organic
states for the two opposite feelings?
Numerous experiments have been conducted in the search for such
radically different organic states, but thus far the search has been rather
disappointing. Arrange to record the subject's breathing and heart beat,
apply pleasant and unpleasant stimuli to him, and see whether there is any
characteristic organic change that goes with pleasant stimuli, and an
opposite change with unpleasant stimuli. You should also obtain an
introspective report from your subject, so as to be sure that the "pleasant
stimuli" actually gave a feeling of pleasantness, etc. Certain experiments of
this sort have indicated that with pleasantness goes slower heart beat and
quicker breathing, with unpleasantness quicker heart beat and slower
breathing. But not all investigators have got these results; and, anyway, it
would be impossible to generalize to the extent of asserting that slow heart
beat always gave a pleasant state of feeling, and rapid heart beat an
unpleasant; for there is slow heart beat during a "morning grouch", and
rapid during joyful expectation. Or, in regard to breathing, try this
experiment: hasten your breathing and see whether a feeling of
pleasantness results; slacken it and see whether unpleasantness results.

CHAPTER IX

179

The fact is that pleasantness can go with a wide range of organic states, so
far as these are revealed by heart beat and breathing; and the same with
unpleasantness. If there is any organic fact definitely characteristic of
either state of feeling, it is a subtle fact that has hitherto eluded
observation.
{177}
2. Pleasantness might represent smooth and easy brain action,
unpleasantness slow and impeded brain action. According to this theory,
unimpeded progress of nerve currents through the brain is pleasant, while
resistance encountered at the brain synapses is unpleasant. A stimulus is
pleasant, then, because the nerve currents started by it find smooth going
through the brain centers, and another stimulus is unpleasant because it
finds the going poor.
While this theory looks good in some ways, and fits some cases very
well--as the great unpleasantness of blocked reaction, where you cannot
make up your mind what to do--there are two big objections to it. The first
objection is found in the facts of practice. Practising any reaction makes it
more and more smooth-running and free from inner obstruction, and
should therefore make it more and more pleasant; but, as a matter of fact,
practising an unfamiliar act of any sort makes it more pleasant for a time
only, after which continued practice makes it automatic and neither
pleasant nor unpleasant. The smoothest reactions, which should give the
highest degree of pleasant feeling according to the theory, are simply
devoid of all feeling.
The second objection lies in the difficulty of believing unpleasant stimuli to
give slow, impeded reactions. On the contrary, the instinctive defensive
reactions to unpleasant stimuli are very quick, and give no sign of impeded
progress of nerve currents through the brain centers.
3. There is one fact, not yet taken into account, that may point the way to a
better theory. Feeling is impulsive. In pleasantness, the impulse is to "stand
pat" and let the pleasant state continue; in unpleasantness, the impulse is to

CHAPTER IX

180

end the state. The impulse of pleasantness is directed towards keeping what
is pleasant, and the impulse of unpleasantness is directed towards getting
rid of the unpleasant. In indifference there is no tendency either to keep or
to be {178} rid of. These facts are so obvious as scarcely to need mention,
yet they may be the core of this whole matter of feeling. Certainly they are
the most important facts yet brought out as relating feeling to conduct.
Putting this fact into neural terms, we say that pleasantness goes with a
neural adjustment directed towards keeping, towards letting things stay as
they are; while unpleasantness goes with an adjustment towards riddance.
Bitter is unpleasant because we are so organized, by native constitution, as
to make the riddance adjustment on receiving this particular stimulus. In
plain language, we seek, to be rid of it, and that is the same as saying it is
unpleasant. Sweet is pleasant for a similar reason.
There is some evidence that these adjustments occur in that part of the
brain called the thalamus. [Footnote: See p. 65.]
Sources of Pleasantness and Unpleasantness
Laying aside now the difficult question of the organic and cerebral nature
of the feelings, we turn to the simpler question of the stimuli that arouse
them. A very important fact immediately arrests our attention. There are
two different kinds of stimuli for pleasantness, and two corresponding kinds
for unpleasantness. The one kind is typified by sweet and bitter, the other
by success and failure. Some things are pleasant (or unpleasant) without
regard to any already awakened desire, while other things are pleasant (or
unpleasant) only because of such a desire. A sweet taste is pleasant even
though we were not desiring it at the moment, and a bitter taste is
unpleasant though we had no expectation of getting it and no desire
awakened to avoid it. On the other hand, the sight of our stone hitting the
tree is pleasant only because we were aiming at the tree, and {179} the
sight of the stone going to one side of the tree is unpleasant just for the
same reason.

CHAPTER IX

181

Some things we want. Because we like them; Some things we like. Because
we want them.
We want candy, because we like the sweet taste; but we like a cold drink
because and when we are thirsty and not otherwise. Thirst is a want for
water, a state of the organism that impels us to drink; and when we are in
this state, we like a drink, a drink is pleasant then. How absurd it would be
to say that we were thirsty because we liked to drink! when the fact is that
we like to drink because we are thirsty. The desire to drink must first be
aroused, and then drinking is pleasant.
What is true of thirst is true of hunger, or of any organic need. The need
must first be aroused, and then its satisfaction is pleasant. This applies just
as well to fighting, laughing, fondling a baby, and to all the instincts. It
gives you no pleasure to strike or kick a person, or to swear at him, unless
you are first angry with him. It gives you no pleasure to go through the
motions of laughing unless you "want to laugh", i.e., unless you are
amused. It gives you no pleasure to fondle the baby unless you love the
baby. Let any instinct be first aroused, and then the result at which the
instinct is aimed causes pleasure, but the same result will cause no
pleasure unless the instinct has been aroused.
The same can be said of desires that are not exactly instinctive. At a
football game, for example, when one of the players kicks the ball and it
sails between the goal posts, half of the spectators yell with joy, while the
other half {180} groan in agony. Why should the appearance of a ball
sailing between two posts be so pleasant to some, and unpleasant to
others? This particular appearance is by itself neither pleasant nor
unpleasant, but because the desire to see this happen has been previously
aroused in the partisans of one team, and the desire that it should not
happen in the partisans of the other, therefore it is that the pleasantness or
unpleasantness occurs. First arouse any desire, and then you can give
pleasure by gratifying it, displeasure by thwarting it. This is the pleasure of
success, and the unpleasantness of failure.

CHAPTER IX

182

Pleasures of this class may be named secondary, because they depend upon
pre-aroused desires.
Primary Likes and Dislikes
Though many of the most intense pleasures and displeasures of life are of
the secondary type, this fact must not blind us to the existence of the
primary pleasures and displeasures, typified by sweet and bitter. Any
sensation with a pronounced feeling-tone is a primary pleasure or
displeasure. We like or dislike it just for itself, and without regard to the
gratification of any pre-aroused instinct or desire.
There are natural likes and dislikes--apart from the satisfaction of
instincts--and there are others that are acquired. In other words, there are
native tastes and acquired tastes. Individuals differ considerably in their
native tastes, and still more in their acquired tastes. Liking for sweets is
native, liking for fragrant odors is native, but liking for lemonade, or black
coffee, or olives, or cheese, is acquired, and not acquired by everybody.
Liking for bright colors is native, but liking for subdued colors, and the
special pleasure in color harmonies, are acquired. So we might {181} run
through the list of the senses, finding under each some sensations with
native feeling-tone, and other sensations that acquire feeling-tone through
experience.
Some people have a native liking for numbers and other facts of a
mathematical nature. We say of such a one that he has a natural taste for
mathematics. Another has a natural dislike for the same. Some have a taste
for things of the mechanical sort, others fight shy of such things. Some have
a natural taste for people, being sociable creatures--which means more
than being gregarious--while others are little interested in mixing with
people, observing their ways, and the give and take of friendly intercourse.
Now the question arises whether these native likes and dislikes, for odors,
colors, tones, numbers, machinery, and people, are really independent of
the instincts. Some psychologists have insisted that all the interest and
satisfaction of life were derived from the instincts, laying special stress on

CHAPTER IX

183

the instincts of curiosity and self-assertion.
With respect to our "natural liking for mathematics", these psychologists
would argue as follows: "First off, curiosity is aroused by numbers, as it
may be by any novel fact; then the child, finding he can do things with
numbers, gratifies his mastery impulse by playing with them. He encounters
number problems, and his mastery impulse is again aroused in the effort to
solve the problems. Later, he is able to 'show off' and win applause by his
mathematical feats, and thus the social form of self-assertion is brought
into play. This particular child may have good native ability for
mathematics, and consequently his mastery impulse is specially gratified by
this kind of activity; but he has no real direct liking for mathematics, and
all his industry in this field is motivated by curiosity and especially by
self-assertion."
The instinct psychologists have a strong case here, as {182} they would
have also in regard to the liking for machinery. Still, the mathematical
individual would not be convinced, for he would testify that numbers, etc.,
made a direct appeal to him. Numbers, geometric forms, and algebraic
transformations are fascinating to him, and there is something beautiful, to
his mind, in the relationships that are discovered. The same could be said
of the liking for plant or animal life that appears in the "born biologist". If
the objects of the world make a direct appeal to the man whose mind is
attuned to them, then his interest and zeal in studying them are not wholly
derived from the instincts. The instincts come into play, truly enough, in all
scientific work, and add impetus to it, but the primary motive is a direct
liking for the kind of facts studied.
"Primary likes and dislikes" are still more clearly in evidence in the arts
than in the sciences. Take the color art, for example. There can be no
manner of doubt that bright colors are natively pleasant. Can we explain
the liking for color as derived from satisfaction of the instincts? Is it due
simply to curiosity? No, for then the color would no longer be attractive
after it had ceased to be a novelty. Is color liked simply for purposes of
self-display? No, this would not explain our delight in the colors of nature.
Or do color effects constitute problems that challenge the mastery impulse?

CHAPTER IX

184

This might fit the case of intricate color designs, but not the strong, simple
color effects that appeal to most people. There is no escape from the
conclusion that color is liked for its own sake, and that this primary liking
is the foundation of color art.
Music, in the same way, is certainly based on a primary liking for tones
and their combinations, as well as for rhythm. Novel effects also appeal to
curiosity, musical performance is a means of display to the performer, and
the problem set by a piece of music to the performer in the {183} way of
execution, and to the listener in the way of understanding and appreciation,
gives plenty of play to the mastery impulse. Besides, music gets associated
with love, tenderness, war and religion; but none of the impulses thus
gratified by music is the fundamental reason for music, since without the
primary taste for tone and rhythm there would be no music to start with,
and therefore no chance for these various impulses to find an outlet in this
direction.
Still another field of human activity, in which native likes and dislikes play
their part alongside of the instincts, is the field of social life. The
gregarious instinct brings individuals together into social groups, and
probably also makes the individual crave participation in the doings of the
group. The sex instinct lends a special interest to those members of the
group who are of the opposite sex, and the parental instinct leads the adults
to take a protective attitude towards the little children. Also, it is probably
due to the parental instinct that any one spontaneously seeks to help the
helpless. Self-assertion has plenty of play in a group, both in the way of
seeking to dominate and in the way of resisting domination; and the
submissive tendency finds an outlet in admiring and following those who
far surpass us. Thwarted self-assertion accounts for many of the dislikes
that develop between the members of a group. But none of these instincts
accounts for the interest in personality, or for the genuine liking that people
may have for one another.
Let a group of persons of the same age and sex get together, all equals for
the time being, no one seeking to dominate the rest, no one bowing to
another as his superior nor chafing against an assumed superiority which

CHAPTER IX

185

he does not admit, no one in a helpless or unfortunate condition that
arouses the pity of the rest. What an uninteresting affair! No instincts
called into play except bare gregariousness! {184} On the contrary, such a
group affords almost or quite the maximum of social pleasure. It affords
scope for comradeship and good fellowship, which are based on a native
liking for people, and not on the instincts.
Enough has perhaps been said to convince the reader that, besides the
things we like for satisfaction of our instinctive needs and cravings, there
are other things that we "just naturally like"--and the same with
dislikes--and that these primary likes and dislikes have considerable
importance in life.
Other Proposed Elementary Feelings
Pleasantness and unpleasantness are the only feelings generally accepted
as elementary, though several others have been suggested.
Wundt's tri-dimensional theory of feeling.
This author suggested that there were three pairs of feelings: pleasantness
and unpleasantness; tension and its opposite, release or relief; and
excitement and its opposite, which may be called numbness or subdued
feeling. Thus there would be three dimensions of feeling, which could be
represented by the three dimensions of space, and any given state of feeling
could be described by locating it along each of the three dimensions. Thus,
one moment, we may be in a pleasant, tense, excited state; another moment
in a pleasant, relieved and subdued state; and another moment in an
unpleasant, tense and subdued state, etc. As each feeling can also exist in
various degrees, the total number of shades of feeling thus provided for
would be very great, indeed.
Though this theory has awakened great interest, it has not won unqualified
approval. Excitement and the rest are real enough states of feeling--no one
doubts that--but the question is whether they are fit to be placed alongside
of pleasantness and unpleasantness as elementary feelings. It {185}

CHAPTER IX

186

appears rather more likely that they are blends of sensations. In the excited
states that have been most carefully studied, that is to say, in fear and
anger, there is that big organic upstir, making itself felt as a blend of many
internal sensations. Tension may very probably be the feeling of tense
muscles, for tension occurs specially in expectancy, and the muscles are
tense then.
Whether elementary or not, these feelings are worthy of note. It is
interesting to examine the striving for a goal and the attainment of the goal
with respect to each "dimension" of feeling. Striving is tense, attainment
brings the feeling of release. Striving is often excited, but fatigue and
drowsiness (seeking for rest) are numb, and self-assertion may be neutral
in this respect, as in "cool assumption". Reaching the goal may be excited
or not; all depends on the goal, whether it be striking your opponent or
going to sleep. On the other hand, reaching the goal is practically always
pleasant (weeping seems an exception here), while striving for a goal is
pleasant or unpleasant according as progress is being made towards the
goal, or stiff obstruction encountered.
The feeling of familiarity, and its opposite, the feeling of strangeness or
newness, also have some claim to be considered here. The first time you see
a person, he seems strange, the next few times he awakens in you the
feeling of familiarity, after which he becomes so much a matter of course as
to arouse no definite feeling of this sort, unless, indeed, a long time has
elapsed since you saw him last; in this case the feeling of familiarity is
particularly strong.
The feelings of doubt or hesitation, and of certainty or assurance, also
deserve mention as possibly elementary.
{186}
EXERCISES
1. Outline the chapter.

CHAPTER IX

187

2. Complete the sentence, "I feel___" in 20 different ways (not using
synonyms), and measure the time required to do this.
3. What can be meant by speaking in psychology of only two feelings, when
common speech recognizes so many?
4. If the states of mind designated by the words, "feeling sure", or "feeling
bored", are compound states, what elements besides the feelings of
pleasantness and unpleasantness may enter into the compounds?
5. Attempt an analysis of the "worried feeling", by your own introspection,
i.e., try to discover elementary feelings and sensations in this complex state
of mind.
6. Following Wundt's three-dimensional scheme of feeling, analyze each of
the following states of mind (for example, a child just admitted to the
presence of the Christmas tree would be in a state of mind that is pleasant,
tense, and excited):
(a) Watching a rocket go up and waiting for it to burst.
(b) Just after the rocket has burst.
(c) Waiting for the dentist to pull.
(d) Just after he has pulled.
(e) Enjoying a warm bed.
(f) Lying abed after waking, not quite able as yet to decide to get up.
(g) Seeing an automobile about to run down a child.
7. Make a list of six primary dislikes, and a list of six dislikes that are
dependent on the instincts.

CHAPTER IX

188

REFERENCES
For a much fuller treatment of the subject, see E. B. Titchener, Textbook of
Psychology, 1909, pp. 225-264.
{187}

CHAPTER X

189

CHAPTER X
SENSATION
AN INVENTORY OF THE ELEMENTARY SENSATIONS OF THE
DIFFERENT SENSES
With reflex action, instinct, emotion and feeling, the list of native mental
activities is still incomplete. The senses are provided by nature, and the
fundamental use of the senses goes with them. The child does not learn to
see or hear, though he learns the meaning of what he sees and hears. He
gets sensation as soon as his senses are stimulated, but recognition of
objects and facts comes with experience. Hold an orange before his open
eyes, and he sees, but the first time he doesn't see an orange. The adult sees
an object, where the baby gets only sensation. "Pure sensation", free from
all recognition, can scarcely occur except in the very young baby, for
recognition is about the easiest of the learned accomplishments, and traces
of it can be seen in the behavior of babies only a few days old.
Sensation is a response; it does not come to us, but is aroused in us by the
stimulus. It is the stimulus that comes to us, and the sensation is our own
act, aroused by the stimulus. Sensation means the activity of the receiving
organ (or sense organ), of the sensory nerves, and of certain parts of the
brain, called the sensory centers. Without the brain response, there is
apparently no conscious sensation, so that the activity of the sense organ
and sensory nerve is preliminary to the sensation proper. Sensation may be
called the first response of the brain to the external stimulus. It is usually
only the first in a series of brain {188} responses, the others consisting in
the recognition of the object and the utilization of the information so
acquired.
Sensation, as we know it in our experience, goes back in the history of the
race to the primitive sensitivity (or irritability) of living matter, seen in the
protozoa. These minute unicellular creatures, though having no sense
organs--any more than they have muscles or digestive organs--respond to a
variety of stimuli. They react to mechanical stimuli, as a touch or jar, to

CHAPTER X

190

chemical stimuli of certain kinds, to thermal stimuli (heat or cold), to
electrical stimuli, and to light. There are some forces to which they do not
respond: magnetism, X-rays, ultraviolet light; and we ourselves are
insensitive to these agents, which are not to be called stimuli, since they
arouse no response.
The Sense Organs
In the development of the metazoa, or multicellular animals, specialization
has occurred, some parts of the body becoming muscles with the primitive
motility much developed, some parts becoming digestive organs, some
parts conductors (the nerves) and some parts becoming specialized
receptors or sense organs. A sense organ is a portion of the body that has
very high sensitivity to some particular kind of stimulus. One sense organ is
highly sensitive to one stimulus, and another to another stimulus. The eye
responds to very minute amounts of energy in the form of light, but not in
other forms; the ear responds to very minute amounts of energy in the form
of sound vibrations, the nose to very minute quantities of energy in certain
chemical forms.
There is only one thing that a sense organ always and necessarily contains,
and that is the termination of a sensory nerve. Without that, the sense
organ, being isolated, would have no effect on the brain or muscles or any
other {189} part of the body, and would be entirely useless. The axons of
the sensory nerve divide into fine branches in the sense organ, and thus are
more easily aroused by the stimulus.
Besides the sensory axons, two other things are often found in a sense
organ--sometimes one of the two, sometimes the other and sometimes both.
First, there are special sense cells in a few sense organs; and second, in
most sense organs there is accessory apparatus which, without being itself
sensitive, assists in bringing the stimulus to the sense cells or sensory nerve
ends.
[Illustration: Fig. 25.--Diagram of the taste end-organ. Within the "Taste
bud" are seen two sense cells, and around the base of these cells are seen

CHAPTER X

191

the terminations of two axons of the nerve of taste. (Figure text: surface of
tongue, taste bud, pit)]
Sense cells are present only in the eye, ear, nose and mouth--always in very
sheltered situations. The taste cells are located in little pits opening upon
the surface of the tongue. In the sides of these pits can be found little
flask-shaped chambers, each containing a number of taste cells. The taste
cell has a slender prolongation that protrudes from the chamber into the
pit; and it is this slender tip of the cell that is exposed to the chemical
stimulus of the {190} tasting substance. The stimulus arouses the taste cell,
and this in turn arouses the ending of the sensory axon that twines about
the base of the cell at the back of the chamber. The taste cell, or its tip, is
extra sensitive to chemical stimuli, and its activity, aroused by the chemical
stimulus, in turn arouses the axon and so starts a nerve current to the brain
stem and eventually to the cortex.
[Illustration: Fig. 26.--The olfactory sense cells and their brain
connections. (Figure text: axon to brain cortex, dendrites, synapses in
brain stem, axons of sense cells sense cells in nose.)]
The olfactory cells, located in a little recess in the upper and back part of
the nose, out of the direct air currents going toward the lungs, are rather
similar to the taste cells. They have fine tips reaching to the surface of the
mucous membrane lining the nasal cavity and exposed to the chemical
stimuli of odors. The olfactory cell has also a long slender branch
extending from its base through the bone into the skull cavity and
connecting there with dendrites of nerve cells. This central branch of the
olfactory cell is, in fact, an axon; and it is peculiar in being an axon
growing from a sense cell. This is the rule in invertebrates, but in
vertebrates the sensory axon is regularly an outgrowth of a {191} nerve
cell, and only in the nose do we find sense cells providing their own sensory
nerve.
[Illustration: Fig. 27.--Sense cells and nerve cells of the retina. Light,
reaching the retina from the interior of the eyeball (as shown in Fig. 28),
passes through the nearly transparent retina till stopped by the pigment

CHAPTER X

192

layer, and then and there arouses to activity the tips of the rods and cones.
The rods and cones pass the impulse along to the bipolar cells and these in
turn to the optic nerve cells, the axons of which extend by way of the optic
nerve to the thalamus in the brain. (Figure text: pigment layer, rods, cones,
light, bipolar Cells, optic Nerve Cells)]
In the eye, the sense cells are the rods and cones of the retina. These are
highly sensitive to light, or, it may be, to chemical or electrical stimuli
generated in the pigment of the retina by the action of light. The rods are
less highly developed than the cones. Both rods and cones connect at their
base with neurones that pass the activity along through the optic nerve to
the brain.
The internal ear contains sense cells of three rather similar kinds, all being
"hair cells", Instead of a single {192} sensitive tip, each cell has a number
of fine hair-tips, and it is these that first respond to the physical stimulus. In
the cochlea, the part of the inner ear concerned with hearing, the hairs are
shaken by sound vibrations that have reached the liquid in which the whole
end-organ is immersed. In the "semicircular canals", a part of the inner ear
that is concerned not with sound but with rotary movements of the head, we
find hair cells again, their hair-tips being matted together and so located as
to be bent, like reeds growing on the bottom of a brook, by currents of the
liquid filling the canals. In the "vestibule", the central part of the inner ear,
the hair-tips of the sense cells are matted together, and in the mat are
imbedded little particles of stony matter, called the "otoliths". When the
head is inclined in any direction, these heavy particles sag and bend the
hairs, so stimulating them; and the same result occurs when a sudden
motion up or down or in any direction is given to the head. Around the base
of the sense cells, in any of these parts of the internal ear, are twined the
fine endings of sensory axons, which are excited by the activity of the sense
cells, and pass the activity on to the brain.
Accessory sense-apparatus.
Every sense except the "pain sense" has more or less of this. The hairs of
the skin are accessory to the sense of touch. A touch on a hair is so easily

CHAPTER X

193

felt that we often think of the hairs as sensitive; but really it is the skin that
is sensitive, or, rather, it is the sensory axon terminating around the root of
the hair in the skin. The tongue can be thought of as accessory apparatus
serving the sense of taste, and the breathing apparatus as accessory to the
sense of smell, "tasting" being largely a tongue movement that brings the
substance to the taste cells, and "smelling" of anything being largely a
series of little inspiratory movements that carry the odor-laden air to the
olfactory part of the nasal cavity.
{193}
But it is in the eye and the ear that the highest development of accessory
sense apparatus has taken place. All of the eye except the retina, and all of
the ear except the sense cells and the sensory axons, are accessory.
[Illustration: Fig. 28.--Horizontal cross section through the right eyeball.
(Figure text: cornea, ciliary muscle, retina, choroid. sclerotic, Optic
Nerve)]
The eye is an optical instrument, like the camera. In fact, it is a camera, the
sensitive plate being the retina, which differs indeed from the ordinary
photographic plate in recovering after an exposure so as to be ready for
another. Comparing the eye with the camera, we see that the eyeball
corresponds to the box, the outer tough coat {194} of the eyeball (the
"sclerotic" coat) taking the place of the wood or metal of which the box is
built, and the deeply pigmented "choroid" coat, that lines the sclerotic,
corresponding to the coating of paint used to blacken the inside of the
camera box and prevent stray light from getting in and blurring the picture.
At the front of the eye, where light is admitted, the sclerotic is transformed
into the transparent "cornea", and the choroid into the contractile "iris",
with the hole in its center that we call "the pupil of the eye".
[Illustration: Fig. 29.--Diagram to show the course of the sound waves
through the outer and middle ear and into the inner ear. The arrow is
placed within the "meatus," and points in the direction taken by the sound
waves. See text for their further course. (Figure text: cochlea, vestibule,

CHAPTER X

194

semicircular canal, ossicles, Eustachian, ear drum)]
The iris corresponds to the adjustable diaphragm of the camera. Just
behind the pupil is the lens of the eye, which also is adjustable by the action
of a little muscle, called the "ciliary muscle". This muscle corresponds to
the focussing mechanism of the camera; by it the eye is focussed on near or
far objects. The eye really {195} has two lenses, for the cornea acts as a
lens, but is not adjustable. The "aqueous and vitreous humors" fill the
eyeball and keep it in shape, while still, being transparent, they allow the
light to pass through them on the way to the retina. The retina is a thin
coat, lying inside the choroid at the back of the eyeball, and having the
form of a hollow hemisphere. The light, coming through the pupil and
traversing the vitreous humor, strikes the retina from the inside of the
eyeball. Other accessory apparatus of the eye includes the lids, the tear
glands, and the muscles that turn the eyeball in any direction.
[Illustration: Fig. 30.--Two views of the internal ear. These views show the
shape of the internal ear cavity. The sense organs lie inside this cavity.
Notice how the three semi-circular canals lie in three perpendicular planes.
(Figure text: cochlea, vestibule, 3 Canals)]
The ear is about as complex a piece of mechanism as the eye. We speak of
the "outer", "middle" and "inner" ear. The outer, in such an animal as the
horse, serves as a movable ear trumpet, catching the sound waves and
concentrating them upon the ear drum, or middle ear. The human external
ear seems to accomplish little; it can be cut off without noticeably affecting
hearing. The most essential part of the external ear is the "meatus" or hole
that allows the sound waves to pass through the skin to the tympanic
membrane or drum head. The sound waves throw this membrane into
vibration, and the vibration is transmitted, by an assembly of three little
bones, across the air-filled cavity {196} of the middle ear to an opening
leading to the water-filled cavity of the inner ear. This opening from the
middle to the inner ear is closed by a membrane in which one end of the
assembly of little bones is imbedded, as the other end is imbedded in the
tympanic membrane; and thus the vibrations are transmitted from the
tympanic membrane to the liquid of the inner ear. Once started in this

CHAPTER X

195

liquid, the vibrations are propagated through it to the sense cells of the
cochlea and stimulate them in the way already suggested.
[Illustration: Fig. 31.--A small sample of the sense cells of the cochlea. The
hairs of the sense cells are shaken by the vibration of the water, and pass
the impulse back to the end-brushes of the auditory axons, The tectorial
membrane looks as if it might act as a damper, but may be concerned, as
"accessory apparatus," in the stimulation of the hair cells. The basilar
membrane consists in part of fibers extending across between the ledges of
bone; these fibers are arranged somewhat after the manner of piano
strings, and have suggested the "piano theory" of hearing, to be mentioned
later in the chapter. (Figure text: water space, membrane, Tectorial
membrane, bone, soft tissue, basilar membrane, auditory axons to brain
stem, nerve cells of auditory nerves, auditory hair cells with end brushes of
auditory axons)]
Further study of the accessory apparatus of the eye and ear can be
recommended as very interesting, but the little that has been said will serve
as an introduction to the study of sensation.
{197}
Analysis of Sensations
Prominent among the psychological problems regarding sensation is that
of analysis. Probably each sense gives comparatively few elementary
sensations, and many blends or compounds of these elements. To identify
the elements is by no means a simple task, for under ordinary
circumstances what we get is a compound, and it is only by carefully
controlling the stimulus that we are able to get the elements before us; and
even then the question whether these are really elementary sensations can
scarcely be settled by direct observation.
Along with the search for elementary sensations goes identification of the
stimuli that arouse them, and also a study of the sensations aroused by any
combination of stimuli. Our task now will be to ask these questions

CHAPTER X

196

regarding each of the senses.
The Skin Senses
Rough and smooth, hard and soft, moist and dry, hot and cold, itching,
tickling, pricking, stinging, aching are skin sensations; but some of these
are almost certainly compounds. The most successful way of isolating the
elements out of these compounds is to explore the skin, point by point, with
weak stimuli of different kinds. If a blunt metal point, or the point of a lead
pencil, a few degrees cooler than the skin, is passed slowly over the skin, at
most points no sensation except that of contact arises, but at certain points
there is a clear sensation of cold. Within an area an inch square on the
back of the hand, several of these cold spots can be found; and when the
exploration is carefully made, and the cold spots marked, they will be found
to give the same sensation every time. Substitute a metal point a few {198}
degrees warmer than the skin, and a few spots will be found that give the
sensation of warmth, these being the warmth spots. Use a sharp point, like
that of a needle or of a sharp bristle, pressing it moderately against the
skin, and you get at most points simply the sensation of contact, but at quite
a number of points a small, sharp pain sensation arises. These are the pain
spots. Finally, if the skin is explored with a hair of proper length and
thickness, no sensation at all will be felt at most points, because the hair
bends so readily when one end of it is pressed against the skin as not to
exert sufficient force to arouse a sensation; but a number of points are
found where a definite sensation of touch or contact is felt; these are the
touch spots.
No other varieties of "spots" are found, and the four sensations of touch,
warmth, cold and pain are believed to be the only elementary skin
sensations. Itch, stinging and aching seem to be the same as pain. Tickle is
touch, usually light touch or a succession of light touches. Smooth and
rough are successions of touch sensations. Moist is usually a compound of
smooth and cold. Hard and soft combine touch and the muscular sensation
of resistance.

CHAPTER X

197

Hot and cold require more discussion. The elementary sensations are
warmth and coolness, rather than hot and cold. Hot and cold are painful,
and the fact is that strong temperature stimuli arouse the pain spots as well
as the warmth or cold spots. Hot, accordingly, is a sensation compounded
of warmth and pain, and cold a sensation composed of coolness and pain.
More than this, when a cold spot is touched with a point heated well above
the skin temperature (best to a little over 100 Fahrenheit), the curious fact
is noted that the cold spot responds with its normal sensation of cold. This
is called the "paradoxical cold sensation". From this fact it is probable that
a hot object excites the cold sensation, along with those of warmth and
{199} pain; so that the sensation of heat is a blend of the three. Another
curious fact is that a very cold object produces a burning sensation
indistinguishable from that of a hot object; so that the sensation of great
cold, like that of heat, is probably a blend of the three elementary
sensations of warmth, cold and pain.
[Illustration: Fig. 32.--Diagram of various sorts of sensory end-organ
found in the skin.
A is a hair end-organ; the sensory axons can be seen coiling around the
root of the hair; evidently a touch on the hair, outside, would squeeze the
coiled axon and stimulate it. The hair is a bit of "accessory apparatus."
B is a touch corpuscle, consisting of a coiled axon-end surrounded by a
little cone of other tissue.
C is an end-bulb, presumably belonging to the temperature sense. It has,
again, a coiled axon-end surrounded by other tissue. The "coils" are really
much more finely branched than the diagram shows.
D is a free-branched nerve end, consisting simply of a branched axon, with
no accessory apparatus. It is the pain-sense organ.
E is a corpuscle of a type found in the subcutaneous tissue, as well as in
more interior parts of the body. It contains an axon-end surrounded by a
layered capsule.]

CHAPTER X

198

The stimulus that arouses the touch sensation is a bending of the skin. That
which arouses warmth or cold is of {200} course a temperature stimulus,
but, strange as it may seem, the exact nature of the effective stimulus has
not been agreed upon. Either it is a warming or cooling of the skin, or it is
the existence of a higher or lower temperature in the skin than that to
which the skin is at the moment "adapted". This matter will become clearer
when we later discuss adaptation. The stimulus that arouses the pain
sensation may be mechanical (as a needle prick), or thermal (heat or cold),
or chemical (as the drop of acid), or electrical; but in any case it must be
strong enough to injure or nearly to injure the skin. In other words, the
pain sense organ is not highly sensitive, but requires a fairly strong
stimulus; and thus it is fitted to give warning of stimuli that threaten injury.
Several kinds of sensory end-organ are found in the skin. There is the
"spherical end-bulb", into which a sensory axon penetrates; it is believed to
be the sense organ for cold. There is the rather similar "cylindrical
end-bulb" believed to be the sense organ for warmth. There is the "touch
corpuscle", found in the skin of the palms and soles, and consisting, like the
end-bulbs, of a mass of accessory cells with a sensory axon ramifying
inside it; this is an end-organ for the sense of touch. There is the hair
end-organ, consisting of a sensory axon coiled about the root of the hair;
this, also, is a touch receptor. Finally, there is the "free-branched nerve
end", consisting simply of the branching of a sensory axon, with no
accessory apparatus whatever; and this is the pain receptor. Perhaps the
pain receptor requires no accessory apparatus because it does not need to
be extremely sensitive.
Now since we find, in the skin, "spots" responsive to four quite different
stimuli, giving four quite different sensations, and apparently provided with
different types of end-organs, it has become customary to speak of four skin
senses in place of the traditional "sense of touch". We {201} speak of the
pain sense, the warmth sense, the cold sense, and the pressure sense, which
last is the sense of touch proper.
The Sense of Taste

CHAPTER X

199

Analysis has been as successful in the sense of taste as in cutaneous
sensation. Ordinarily we speak of an unlimited number of tastes, every
article of food having its own characteristic taste. Now the interior of the
mouth possesses the four skin senses in addition to taste, and many tastes
are in part composed of touch, warmth, cold or pain. A "biting taste" is a
compound of pain with taste proper, and a "smooth taste" is partly touch.
The consistency of the food, soft, tough, brittle, gummy, also contributes, by
way of the muscle sense, to the total "taste". But in addition to all these
sensations from the mouth, the flavor of the food consists largely of odor.
Food in the mouth stimulates the sense of smell along with that of taste, the
odor of the food reaching the olfactory organ by way of the throat and the
rear passage to the nose. If the nose is held tightly so as to prevent all
circulation of air through it, most of the "tastes" of foods vanish; coffee and
quinine then taste alike, the only taste of each being bitter, and apple juice
cannot be distinguished from onion juice.
But when the nose is excluded, and when cutaneous and muscular
sensations are deducted, there still remain a few genuine tastes. These are
sweet, sour, bitter and salty--and apparently no more. These four are the
elementary taste sensations, all others being compounds. The papillae of
the tongue, with their little "pits" already spoken of, correspond to the
"spots" of the skin, with this difference, however, that the papillae do not
each give a single sensation. Some of them give only two, some only three
of the four tastes; and the bitter taste is aroused principally from {202} the
back of the tongue, the sweet from the tip, the sour from the sides, the salty
from both tip and sides.
The stimulus to the sense of taste is something of a chemical nature. The
tasteable substances must be in solution in order to penetrate the pits and
get to the sensitive tips of the taste cells. If the upper surface of the tongue
is first dried, a dry lump of sugar or salt laid on it gives no sensation of
taste until a little saliva has accumulated and dissolved some of the
substance.
Exactly what is the chemical agent that produces a given taste sensation is
a problem of some difficulty. Many different substances give the sensation

CHAPTER X

200

of bitter, and the question is, what there is common to all these substances.
The sweet taste is aroused not only by sugar, but by glycerine, saccharine,
and even "sugar of lead" (lead acetate). The sour taste is aroused by most
acids, but not by all, and also by some substances that are not chemically
acids. Thus the chemistry of taste stimuli involves something not as yet
understood.
Though there is this uncertainty regarding the stimulus, on the whole the
sense of taste affords a fine example of success achieved by experimental
methods in the analysis of complex sensations. At the same time it affords a
fine example of the fusion of different sensations into characteristic blends.
The numerous "tastes" of every-day life, though found on analysis to be
compounded of taste, smell, touch, pain, temperature and muscle
sensations, have the effect of units. The taste of lemonade, for example,
compounded of sweet, sour, cold and lemon odor, has the effect of a single
characteristic sensation. It can be analyzed, but it ordinarily appears as a
unit. This is true generally of blends; indeed, what we mean by blending is
that, while the component sensations are still present and can be found by
careful attention, they are not simply present together {203} but are
compounded into a characteristic total. Each elementary sensation entering
into the blend gives up some of its own quality, as, in the case of lemonade,
neither the sweet nor the sour is quite so distinct and obtrusive as either
would be if present alone. The same is true of the lemon odor, and it is true
generally of the odor components that enter into the "tastes" of food. Were
the odor components in these tastes as clear and distinct as they are when
the same substance is smelled outside the mouth, we could not fail to notice
that the "tastes" were largely composed of odor. The obtrusive thing about
a blend is the total effect, not the elementary sensations that are blended.
The Sense of Smell
The great variety of odors long resisted every attempt at psychological
analysis, largely because the olfactory end-organ is so secluded in position.
You cannot apply stimuli to separate parts of it, as you can to the skin or
tongue. But, recently, good progress has been made, [Footnote: By
Henning.] by assembling almost all possible odors, and becoming

CHAPTER X

201

thoroughly acquainted with them, not as substances, but simply as odors,
and noting their likenesses and differences. It seems possible now to state
that there are six elementary odors, as follows:
1. Spicy, found in pepper, cloves, nutmeg, etc.
2. Flowery, found in heliotrope, etc.
3. Fruity, found in apple, orange oil, vinegar, etc.
4. Resinous, found in turpentine, pine needles, etc.
5. Foul, found in hydrogen sulphide, etc.
6. Scorched, found in tarry substances.
These being the elements, there are many compound odors. The odor of
roasted coffee is a compound of resinous and scorched, peppermint a
compound of fruity and spicy.
{204}
Each elementary odor corresponds to a certain characteristic in the
chemical constitution of the stimulus.
The sense of smell is extremely delicate, responding to very minute
quantities of certain substances diffused in the air. It is extremely useful in
warning us against bad air and bad food. It has also considerable esthetic
value.
Organic Sensation
The term "organic sensation" is used to cover a variety of sensations from
the internal organs, such as hunger, thirst, nausea, suffocation and less
definite bodily sensations that color the emotional tone of any moment,
contributing to "euphoria" and also to disagreeable states of mind. Hunger

CHAPTER X

202

is a sensation aroused by the rubbing together of the stomach walls when
the stomach, being ready for food, begins its churning movements. Careful
studies of sensations from the internal organs reveal astonishingly little of
sensation arising there, but there can be little doubt that the sensations just
listed really arise where they seem to arise, in the interior of the trunk.
Little has been done to determine the elementary sensations in this field;
probably the organic sensations that every one is familiar with are blends
rather than elements.
The Sense of Sight
Of the tremendous number and variety of visual sensations, the great
majority are certainly compounds. Two sorts of compound sensation can be
distinguished here: blends similar to those of taste or smell, and patterns
which scarcely occur among sensations of taste and smell, though they are
found, along with blends, in cutaneous sensation. Heat, compounded of
warmth, cold and pain sensations, is an {205} excellent example of a blend,
while the compound sensation aroused by touching the skin simultaneously
with two points--or three points, or a ring or square--is to be classed as a
pattern. In a pattern, the component parts are spread out in space or time
(or in both at once), and for that reason are more easily attended to
separately than the elements in a blend. Yet the pattern, like the blend, has
the effect of a unit. A spatial pattern has a characteristic shape, and a
temporal pattern a characteristic course or movement. A rhythm or a tune
is a good example of a temporal pattern.
Visual sensations are spread out spatially, and thus fall into spatial
patterns. They also are in constant change and motion, and so fall into
temporal patterns, many of which are spatial as well. The visual sensation
aroused, let us say in a young baby, by the light entering his eye from a
human face, is a spatial pattern; the visual sensation aroused by some one's
turning down the light is a pure temporal pattern; while the sensation from
a person seen moving across the room is a pattern both spatial and
temporal. Finding the elements of a visual pattern would mean finding the
smallest possible bits of it, which would probably be the sensations due to

CHAPTER X

203

the action of single rods and cones, just as the smallest bit of a cutaneous
sensation would be due to the exciting of a single touch spot, warmth spot,
cold spot or pain spot.
Analyzing a visual blend is quite a different job. Given the color pink, for
example, let it be required to discover whether this is a simple sensation or
a blend of two or more elementary sensations. Studying it intently, we see
that it can be described as a whitish red, and if we are willing to accept this
analysis as final, we conclude that pink is a blend of the elementary
sensations of white and red. Of the thousands and thousands of
distinguishable hues, shades {206} and tints, only a few are elements and
the rest are color blends; and our main problem now is to identify the
elements. Notice that we are not seeking for the physical elements of light,
nor for the primary pigments of the painter's art, but for the elementary
sensations. Our knowledge of physics and painting, indeed, is likely to lead
us astray. Sensations are our responses to the physical stimulus, and the
psychological question is, what fundamental responses we make to this
class of stimuli.
Suppose, without knowing anything of pigments or of the physics of light,
we got together a collection of bits of color of every shade and tint, in order
to see what we could discover about visual sensations. Leaving aside the
question of elements for the moment, we might first try to classify the bits of
color. We could sort out a pile of reds, a pile of blues, a pile of browns, a
pile of grays, etc., but the piles would shade off one into another. The
salient fact about colors is the gradual transition from one to another. We
can arrange them in series better than we can classify them. They can be
serially arranged in three different ways, according to brightness or
intensity, according to color-tone, and according to saturation.
The intensity series runs from light to dark. We can arrange such a series
composed entirely of reds or blues or any other one color; or we can
arrange the whole collection of bits of color into a single light-dark series.
It is not always easy to decide whether a given shade of one color is lighter
or darker than a given shade of a different color; but in a rough way, at
least, every bit of whatever color would have its place in the single intensity

CHAPTER X

204

series. An intensity series can, of course, be arranged in any other sense as
well as in sight.
The color-tone series is best arranged from a collection consisting entirely
of full or saturated colors. Start the {207} series with any color and put
next to this the color that most resembles it in color-tone, i.e., in specific
color quality; and so continue, adding always the color that most resembles
the one preceding. If we started with red, the next in order might be either a
yellowish red or a bluish red. If we took the yellowish red and placed it
beside the red, then the next in order would be a still more yellowish red,
and the series would run on to yellow and then to greenish yellow, green,
bluish green, blue, violet, purple, purplish red, and so back to red. The
color-tone series returns upon itself. It is a circular series.
[Illustration: Fig. 33.--The color circle. R, Y, G and B, stand for the colors
red, yellow, green and blue. The shaded portion corresponds to the
spectrum or rainbow. Complementary colors (see later) lie diametrically
opposite to each other on the circumference.]
A saturation series runs from full-toned or saturated colors to pale or dull.
Since we can certainly say of a pale blue that it is less saturated than a
vivid red, etc., we could, theoretically, arrange our whole collection of bits
of color in a single saturation series, but our judgment would be very
uncertain at many points. The most significant saturation series confine
themselves to a single color-tone, {208} and also, as far as possible, to a
constant brightness, and extend from the most vivid color sensation
obtainable with this color-tone and brightness, through a succession of less
and less strongly colored sensations of the same tone and brightness, to a
dead gray of the same brightness. Any such saturation series terminates in
a neutral gray, which is light or dark to match the rest of the particular
saturation series.
White, black and gray, which find no place in the color-tone series, give an
intensity series of their own, running from white through light gray and
darker and darker gray to black, and any gray in this series may be the
zero point in a saturation series of any color-tone.

CHAPTER X

205

A three-dimensional diagram of the whole system of visual sensations can
be built up in the following way. Taking all the colors of the same degree of
brightness, we can arrange the most saturated, in the order of their
color-tone, around the circumference of a circle, put a gray of the same
brightness at the center of this circle, and then arrange a saturation series
for each color-tone extending from the most saturated at the circumference
to gray at the center. This would be a two-dimensional diagram for colors
having the same brightness. For a greater brightness, we could arrange a
similar circle and place it above the first, and for a smaller brightness, a
similar circle and place it below the first, and we could thus build up a pile
of circles, ranging from the greatest brightness at the top to the least at the
bottom. But, as the colors all lose saturation when their brightness is much
increased, and also when it is much decreased, we should make the circles
smaller and smaller toward either the top or the bottom of the pile, so that
our three-dimensional diagram would finally take the form of a double
cone, with the most intense white, like that of sunlight, at the upper point,
with dead black at the lower point, {209} and with the greatest diameter
near the middle brightness, where the greatest saturations can be obtained.
The axis of the double cone, extending from brightest white to dead black,
would give the series of neutral grays. All the thousands of distinguishable
colors, shades and tints, would find places in this scheme.
[Illustration: Fig. 34.--The color cone, described in the text. Instead of a
cone, a four-sided pyramid is often used, so as to emphasize the four main
colors, red, yellow, green and blue, which are then located at the corners of
the base of the pyramid. (Figure text: white, black, R, B, G, Y)]
Simpler Forms of the Color Sense
Not every one gets all these sensations. In color-blindness, the system is
reduced to one or two dimensions, instead of three. There are two principal
forms of color-blindness: total, very uncommon; and red-green blindness,
fairly {210} common. The totally color-blind individual sees only white,
black, and the various shades of gray. His system of visual sensations is
reduced to one dimension, corresponding to the axis of our double cone.

CHAPTER X

206

Red-green blindness, very uncommon in women, is present in three or four
percent of men. It is not a disease, not curable, not corrected by training,
and not associated with any other defect of the eye, or of the brain. It is
simply a native peculiarity of the color sense. Careful study shows that the
only color sensations of the red-green blind person are blue and yellow,
along with white, black and the grays. His color circle reduces to a straight
line with yellow at one end and blue at the other. Instead of the color circle,
he has a double saturation series, reaching from saturated yellow through
duller yellows to gray and thence through dull blues to saturated blue.
What appears to the normal eye as red, orange or grass green appears to
him as more or less unsaturated yellow; and what appears to the normal
eye as greenish blue, violet and purple appears to him as more or less
unsaturated blue. His color system can be represented in two dimensions,
one for the double saturation series, yellow-gray-blue, and the other for the
intensity series, white-gray-black.
Color-blindness, always interesting and not without some practical
importance (since the confusions of the color-blind eye might lead to
mistaking signals in navigation or railroading), takes on additional
significance when we discover the curious fact that every one is
color-blind--in certain parts of the retina. The outermost zone of the retina,
corresponding to the margin of the field of view, is totally color-blind (or
very nearly so), and an intermediate zone, between this and the central
area of the retina that sees all the colors, is red-green blind, and delivers
only blue and yellow sensations, along with white, black and gray. Take
{211} a spot of yellow or blue and move it in from the side of the head into
the margin of the field of view and then on towards the center. When it first
appears in the margin, it simply appears gray, but when it has come
inwards for a certain distance it changes to yellow. If a red or green spot is
moved in similarly, it first appears gray, then takes on a faint tinge of
yellow, and finally, as it approaches the center of the field of view, appears
in its true color. The outer zone gets only black and white, the intermediate
zone gets, in addition to these, yellow and blue, and the central area adds
red and green (and with them all the colors).

CHAPTER X

207

[Illustration: Fig. 35.--Color cones of the retina. F is the fovea, or central
area of clearest vision. (Figure text: all colors, white-black & yellow-blue,
white-black)]
Now as to the question of elements, let us see how far we can go, keeping
still to the sensations, without any reference to the stimulus. If a collection
of bits of color is presented to a class of students who have not previously
studied this matter, with the request that each select those colors that seem
to him elementary and not blends, there is practically unanimous
agreement on three colors, red, yellow and blue; and there are some votes
for green also, but almost none for orange, violet, purple, brown or any
other colors. {212} except white and black. That white and black are
elementary sensations is made clear by the case of total color-blindness,
since in this condition there are no other visual sensations from which
white and black could be compounded, and these two differ so completely
from each other that it would be impossible to think of white as made up of
black, or black of white. Gray, on the other hand, appears like a blend of
black and white. In the same way, red-green blindness demonstrates the
reality of yellow and blue as elementary sensations, since neither of them
could be reduced to a blend of the other with white or black; and there are
no other colors present in this form of color vision to serve as possible
elements out of which yellow and blue might be compounded. That white,
black, yellow and blue are elementary sensations is therefore clear from
the study of visual sensations alone; and there are indications that red and
green are also elements.
Visual Sensations as Related to the Stimulus
Thus far, we have said nothing of the stimulus that arouses visual
sensations. Light, the stimulus, is physically a wave motion, its vibrations
succeeding each other at the rate of 500,000000,000000 vibrations, more
or less, per second, and moving through space with a speed of 186,000
miles per second. The "wave-length", or distance from the crest of one
wave to the crest of the next following, is measured in millionths of a
millimeter.

CHAPTER X

208

The most important single step ever taken towards a knowledge of the
physics of light, and incidentally towards a knowledge of visual sensations,
was Newton's analysis of white light into the spectrum. He found that when
white light is passed through a prism, it is broken up into all the colors of
the rainbow or spectrum. Sunlight consists of a {213} mixture of waves of
various lengths. At one end of the spectrum are the long waves
(wave-length 760 millionths of a millimeter), at the other end are the short
waves (wavelength 390), and in between are waves of every intermediate
length, arranged in order from the longest to the shortest. The longest
waves give the sensation of red, and the shortest that of violet, a slightly
reddish blue.
Outside the limits of the visible spectrum, however, there are waves still
longer and shorter, incapable of arousing the retina, though the very long
waves, beyond the red, arouse the sensation of warmth from the skin, and
the very short waves, beyond the violet, though arousing none of the senses,
do effect the photographic plate. Newton distinguished seven colors in the
visible spectrum, red, orange, yellow, green, blue, indigo and violet; but
there is nothing specially scientific about this list, since physically there are
not seven but an unlimited number of wave-lengths included in the
spectrum, varying continuously from the longest at the red end to the
shortest at the violet; while psychologically the number of distinguishable
colors in the spectrum, though not unlimited, is at least much larger than
seven. Between red and orange, for instance, there are quite a number of
distinguishable orange-reds and reddish oranges.
If now we ask what differences in the stimulus give rise to the three kinds of
difference in visual sensation that were spoken of previously, we find that
color-tone depends on the wave-length of the light, brightness on the
energy of the stimulus, i.e., on the amplitude of the vibration, and
saturation on the mixture of long and short wave-lengths in a complex
light-stimulus--the more mixture, the less saturation.
These are the general correspondences between the light stimulus and the
visual sensation; but the whole relationship is much more complex.
Brightness depends, not only on the energy of the stimulus, but also on

CHAPTER X

209

wave-length. The {214} retina is tuned to waves of medium length,
corresponding to the yellow, which arouse much brighter sensation than
long or short waves of the same physical energy. Otherwise put, the
sensitivity of the retina is greatest for medium wavelengths, and decreases
gradually towards the ends of the spectrum, ceasing altogether, as has been
said, at wavelengths of 760 at the red end and of 390 at the violet end.
Saturation, depending primarily on amount of mixture of different
wave-lengths, depends also on the particular wavelengths acting, and also
on their amplitude. So, the red and blue of the spectrum are more saturated
than the yellow and green; and very bright or very dim light, however
homogeneous, gives a less saturated sensation than a stimulus of medium
strength.
Color Mixing
Color-tone depends on the wave-length, as has been said, but this is far
from the whole truth; the whole truth, indeed, is one of the most curious
and significant facts about color vision. We have said that each color-tone
is the response to a particular wave-length. But any color-tone can be got
without its particular wave-length being present at all; all that is necessary
is that wave-lengths centering about this particular one shall be present. A
mixed light, consisting of two wave-lengths, the one longer and the other
shorter than the particular wave which when acting alone gives a certain
color-tone, will give that same color-tone. For example, the orange color
resulting from the isolated action of a wave-length of 650 is given also by
the combined action of wave-lengths of 600 and 700, in amounts suitably
proportioned to each other.
A point of experimental technique: in mixing colored lights for the purpose
of studying the resulting sensations, we do not mix painter's pigments, since
the physical {215} conditions then would be far from simple, but we mix the
lights themselves by throwing them together either into the eye, or upon a
white screen. We can also, on account of a certain lag or hang-over in the
response of the retina, mix lights by rapidly alternating them, and get the
same effect as if we had made them strike the retina simultaneously.

CHAPTER X

210

By mixing a red light with a yellow, in varying proportions, all the
color-tones between red and yellow can be got--reddish orange, orange
and yellowish orange. By mixing yellow and green lights, we get all the
greenish yellow and yellowish green color-tones; and by mixing green and
blue lights we get the bluish greens and greenish blues. Finally, by mixing
blue and red lights, in varying proportions, we get violet, purple and
purplish red. Purple has no place in the spectrum, since it is a sensation
which cannot be aroused by the action of any single wave-length, but only
by the mixture of long and short waves.
To get all the color-tones, then, we need not employ all the wave-lengths,
but can get along with only four. In fact, we can get along with three. Red,
green and blue will do the trick. Red and green lights, combined, would
give the yellows; green and blue would give the greenish blues; and red
and blue would give purple and violet.
The sensation of white results--to go back to Newton--from the combined
action of all the wave-lengths. But the stimulus need not contain all the
wave-lengths. Four are enough; the three just mentioned would be enough.
More surprising still, two are enough, if chosen just right. Mix a pure
yellow light with a pure blue, and you will find that you get the sensation of
white--or gray, if the lights used are not strong.
[Footnote: When you mix blue and yellow pigments, each absorbs part of
the wave-lengths of white light, and what is left after this double absorption
may be predominantly green. This is absolutely different from the addition
of blue to yellow light; addition gives white, not green.]
{216}
Lights, or wave-lengths, which when acting together on the retina give the
sensation of white or gray, are said to be complementary. Speaking
somewhat loosely, we sometimes say that two colors are complementary
when they mix to produce white. Strictly, the colors--or at least the color
sensations--are not mixed; for when yellow and blue lights are mixed, the
resulting sensation is by no means a mixture of blue and yellow sensations,

CHAPTER X

211

but the sensation of white in which there is no trace of either blue or
yellow. Mixing the stimuli which, acting separately, give two
complementary colors, arouses the colorless sensation of white.
Blue and yellow, then, are complementary. Suppose we set out to find the
complementary of red. Mixing red and yellow lights gives the color-tones
intermediate between these two; mixing red and green still gives the
intermediate color-tones, but the orange and yellow and yellowish green so
got lack saturation, being whitish or grayish. Now mix red with bluish
green, and this grayishness is accentuated, and if just the right wave-length
of bluish green is used, no trace of orange or yellow or grass green is
obtained, but white or gray. Red and bluish green are thus complementary.
The complement of orange light is a greenish blue, and that of greenish
yellow is violet. The typical green (grass green) has no single wave-length
complementary to it, but it does give white when mixed with a compound of
long and short waves, which compound by itself gives the sensation of
purple; so that we may speak of green and purple as complementary.
What Are the Elementary Visual Sensations?
Returning now to the question of elementary sensations, which we laid
aside till we had examined the relationship of the sensations to the
stimulus, we need to be on our guard against physics, or at least against
being so much impressed with the physics of light as to forget that we are
concerned with the response of the organism to physical light--a matter on
which physics cannot speak the final word.
{217}
Fig. 36.--(After König.) The color triangle, a map of the laws of color
mixture. The spectral colors are arranged in order along the heavy solid
line, and the purples along the heavy dotted line. The numbers give the
wave-lengths of different parts of the spectrum. Inside the heavy line are
located the pale tints of each color, merging from every side into white,
which is located at the point W.

CHAPTER X

212

Suppose equal amounts of two spectral colors are mixed: to find from the
diagram the color of the mixture. Locate the two colors on the heavy line,
draw a straight line between these two points, and the middle of this line
gives the color-tone and saturation of the mixture. For example, mix red
and yellow: then the resulting color is a saturated reddish yellow. Mix red
(760) and green (505): the resulting yellow is non-saturated, since the
straight line between these two points lies inside the figure. If the straight
line joining two points passes through W, the colors located at the two
points are complementary.
Spectral colors are themselves not completely saturated. The way to get
color sensations of maximum saturation is first to stare at one color, so as
to fatigue or adapt the eye for that color, and then to turn the eye upon the
complementary color, which, under these conditions, appears fuller and
richer than anything otherwise obtainable. The corners, R, G, and B,
denote colors of maximum saturation, and the whole of the triangle outside
of the heavy line is reserved for super-saturated color sensations.
{end 217; text continues from 216} {218}
Physics tells us of the stimulus, but we are concerned with the response.
The facts of color-blindness and color mixing show very clearly that the
response does not tally in all respects with the stimulus. Physics, then, is
apt to confuse the student at this point and lead him astray. Much
impressed with the physical discovery that white light is a mixture of all
wave-lengths, he is ready to believe the sensation of white a mixed
sensation. He says, "White is the sum of all the colors", meaning that the
sensation of white is compounded of the sensations of red, orange, yellow,
green, blue and violet--which is simply not true. No one can pretend to get
the sensations of red or blue in the sensation of white, and the fact of
complementary colors shows that you cannot tell, from the sensation of
white, whether the stimulus consists of yellow and blue, or red and bluish
green, or red, green and blue, or all the wave-lengths, the response being
the same to all these various combinations. Total color-blindness showed
us, when we were discussing this matter before, that white was an
elementary sensation, and nothing that has been said since changes that

CHAPTER X

213

conclusion.
Consider black, too. Physics says, black is the absence of light; but this
must not be twisted to mean that black is the absence of all visual
sensation. Absence of visual sensation is simply nothing, and black is far
from that. It is a sensation, as positive as any, and undoubtedly elementary.
From the point of view of physics, there is no reason for considering any
one color more elementary than any other. Every wave-length is
elementary; and if sensation tallied precisely with the stimulus, every
spectral color-tone would be an element. But there are obvious objections
to such a view, such as: (1) there are not nearly as many {219}
distinguishable color-tones as there are wave-lengths; (2) orange, having a
single wave-length, certainly appears to be a blend as truly as purple,
which has no single wave-length; and (3) we cannot get away from the fact
of red-green blindness, in which there are only two color-tones, yellow and
blue. In this form of color vision (which, we must remember, is normal in
the intermediate zone of the retina), there are certainly not as many
elementary responses as there are wave-lengths, but only one response to
all the longer waves (the sensation of yellow), one response to all the
shorter waves (the sensation of blue), one response to the combination of
long and short waves (the sensation of white), and one response to the
cessation of light (the sensation of black). These four are certainly
elementary sensations, and there are probably only a few more.
There must be at least two more, because of the fact that two of the sure
elements, yellow and blue, are complementary. For suppose we try to get
along with one more, as red. Then red, blended with yellow, would give the
intervening color-tones, namely, orange with reddish and yellowish
orange; and red blended with blue would give violet and purple; but yellow
and blue would only give white or gray, and there would be no way of
getting green. We must admit green as another element. The particular red
selected would be that of the red end of the spectrum, if we follow the
general vote; and the green would probably be something very near grass
green. We thus arrive at the conclusion that there are six elementary visual
responses or sensations: white and black, yellow and blue, red and green.

CHAPTER X

214

It is a curious fact that some of these elementary sensations blend with each
other, while some refuse to blend. White and black blend to gray, and
either white or black or both together will blend with any of the four
elementary colors or with any possible blend of these four. Brown, for
{220} example, is a grayish orange, that is, a blend of white, black, red and
yellow. Red blends with yellow, yellow with green, green with blue, and
blue with red. But we cannot get yellow and blue to blend, nor red and
green. When we try to get yellow and blue to blend, by combining their
appropriate stimuli, both colors disappear, and we get simply the colorless
sensation of white or gray. When we try to get red and green to blend, both
of them disappear and we get the sensation of yellow.
Theories of Color Vision
Of the most celebrated theories of color vision, the oldest, propounded by
the physicists Young and Helmholtz, recognized only three elements, red,
green and blue. Yellow they regarded as a blend of red and green, and
white as a blend of all three elements. The unsatisfactory nature of this
theory is obvious. White as a sensation is certainly not a blend of these
three color sensations, but is, precisely, colorless; and no more is the
yellow sensation a blend of red and green. Moreover, the theory cannot do
justice either to total color-blindness, with its white and black but no
colors, or to red-green blindness, with its yellow but no red or green.
The next prominent theory was that of the physiologist Hering. He did
justice to white and black by accepting them as elements; and to yellow and
blue likewise. The fact that yellow and blue would not blend he accounted
for by supposing them to be antagonistic responses of the retina; when,
therefore, the stimuli for both acted together on the retina, neither of the
two antagonistic responses could occur, and what did occur was simply the
more generic response of white. Proceeding along this line, he concluded
that red and green were also antagonistic responses; but just here {221} he
committed a wholly unnecessary error, in assuming that if red and green
were antagonistic responses, the combination of their stimuli must give
white, just as with yellow and blue. Accordingly, he was forced to select as
his red and green elementary color-tones two that would be

CHAPTER X

215

complementary; and this meant a purplish (i.e., bluish) red, and a bluish
green, with the result that his "elementary" red and green appear to nearly
every one as compounds and not elements. It would really have been just as
easy for Hering to suppose that the red and green responses, antagonizing
each other, left the sensation yellow; and then he could have selected that
red and green which we have concluded above to have the best claim.
A third theory, propounded by the psychologist, Dr. Christine
Ladd-Franklin, is based on keen criticism of the previous two, and seems to
be harmonious with all the facts. She supposes that the color sense is now
in the third stage of its evolution. In the first stage the only elements were
white and black; the second stage added yellow and blue; and the third
stage red and green. The outer zone of the retina is still in the first stage,
and the intermediate zone in the second, only the central area having
reached the third. In red-green blind individuals, the central area remains
in the second stage, and in the totally color-blind the whole retina is still in
the first stage.
In the first stage, one response, white, was made to light of whatever
wave-length. In the second stage, this single response divided into two, one
aroused by the long waves and the other by the short. The response to the
long waves was the sensation of yellow, and that to the short waves the
sensation of blue. In the third stage, the yellow response divided into one
for the longest waves, corresponding to the red, and one for somewhat
shorter waves, corresponding to the green. Now, when we try to get a blend
of red and green {222} by combining red and green lights, we fail because
the two responses simply unite and revert to the more primitive yellow
response; and similarly when we try to get the yellow and blue responses
together, they revert to the more primitive white response out of which they
developed.
But, since no one can pretend to see yellow as a reddish green, nor white as
a bluish yellow, it is clear that the just-spoken-of union of the red and green
responses, and of the yellow and blue responses, must take place below the
level of conscious sensation. These unions probably take place within the
retina itself. Probably they are purely chemical unions.

CHAPTER X

216

[Illustration: Fig. 37--The Ladd-Franklin theory of the evolution of the
color sense. (Figure text: Stage 1--white, Stage 2--yellow blue, Stage 3--red
green blue)]
The very first response of a rod or cone to light is probably a purely
chemical reaction. Dr. Ladd-Franklin, carrying out her theory, supposes
that a light-sensitive "mother substance" in the rods and cones is
decomposed by the action of light, and gives off cleavage products which
arouse the vital activity of the rods and cones, and thus start nerve currents
coursing towards the brain.
In the "first stage", she supposes, a single big cleavage product, which we
may call W, is split off by the action of {223} light upon the mother
substance, and the vital response to W is the sensation of white.
In the second stage, the mother substance is capable of giving off two
smaller cleavage products, Y and B. Y is split off by the long waves of light,
and B by the short waves, and the vital response to Y is the sensation of
yellow, that to B the sensation of blue. But suppose that, chemically, Y + B
= W: then, if Y and B are both split off at the same time in the same cone,
they immediately unite into W, and the resulting sensation is white, and
neither yellow nor blue.
[Illustration: Fig. 38.--The cleavage products, in the three stages of the
color sense. The "mother substance" is not represented in the diagram, but
only the cleavage products which, according to the Ladd-Franklin theory,
are the direct stimuli for the color sensations. (Figure text: 1--white,
2--yellow blue, 3--red green blue)]
Similarly, in the third stage, the mother substance is capable of giving off
three cleavage products, R, G and B; and there are three corresponding
vital responses, the sensations of red, green and blue. But, chemically, R +
G = Y; and therefore, if R and G are split off at the same time, they unite
chemically into Y and give the sensation of yellow. If R, G and B are all
split off at the same time, they unite chemically as follows: R + G = Y, and
Y + B = W; and therefore the resulting sensation is that of white.

CHAPTER X

217

This theory of cleavage products is in good general agreement with
chemical principles, and it does justice to all the facts of color vision, as
detailed in the preceding pages. It should be added that "for black, the
theory supposes that, {224} in the interest of a continuous field of view,
objects which reflect no light at all upon the retina have correlated with
them a definite non-light sensation--that of black." [Footnote: Quotation
from Dr. Ladd-Franklin.]
Adaptation
Sensory adaptation is a change that occurs in other senses also, but it is so
much more important in the sense of sight than elsewhere that it may best
be considered here. The stimulus continues, the sensation ceases or
diminishes--that is the most striking form of sensory adaptation. Continued
action of the same stimulus puts the sense into such a condition that it
responds differently from at first, and usually more weakly. It is much like
fatigue, but it often is more positive and beneficial than fatigue.
The sense of smell is very subject to adaptation. On first entering a room
you clearly sense an odor that you can no longer get after staying there for
some time. This adaptation to one odor does not prevent your sensing quite
different odors. Taste shows less adaptation than smell, but all are familiar
with the decline in sweet sensation that comes with continued eating of
sweets.
All of the cutaneous senses except that for pain are much subject to
adaptation. Continued steady pressure gives a sensation that declines
rapidly and after a time ceases altogether. The temperature sense is usually
adapted to the temperature of the skin, which therefore feels neither warm
nor cool. If the temperature of the skin is raised from its usual level of
about 70 degrees Fahrenheit to 80 or 86, this temperature at first gives the
sensation of warmth, but after a time it gives no temperature sensation at
all; the warmth sense has become adapted to the temperature of 80
degrees; and now a temperature of 70 will give the sensation of cool. {225}
Hold one hand in water at 80 and the other in water at 66, and when both
have become adapted to these respective temperatures, plunge them

CHAPTER X

218

together into water at 70; and you will find this last to feel cool to the
warm-adapted hand and warm to the cool-adapted. There are limits to this
power of adaptation.
The muscle sense seems to become adapted to any fixed position of a limb,
so that, after the limb has remained motionless for some time, you cannot
tell in what position it is; to find out, you have only to move it the least bit,
which will excite both the muscle sense and the cutaneous pressure sense.
The sense of head rotation is adaptable, in that a rotation which is keenly
sensed at the start ceases to be felt as it continues; but here it is not the
sense cells that become adapted, but the back flow that ceases, as will soon
be explained.
To come now to the sense of sight, we have light adaptation, dark
adaptation, and color adaptation. Go into a dark room, and at first all
seems black, but by degrees--provided there is a little light filtering into the
room--you begin to see, for your retina is becoming dark-adapted. Now go
out into a bright place, and at first you are "blinded", but you quickly "get
used" to the bright illumination and see objects much more distinctly than
at first; for your eye has now become light-adapted. Remain for some time
in a room illuminated by a colored light (as the yellowish light of most
artificial illuminants), and by degrees the color sensation bleaches out so
that the light appears nearly white.
Dark adaptation is equivalent to sensitizing the retina for faint light.
Photographic plates can be made of more or less sensitiveness for use with
different illuminations; but the retina automatically alters its sensitivity to
fit the illumination to which it is exposed.
{226}
Rod and Cone Vision
You will notice, in the dark room, that while you see light and shade and
the forms of objects, you do not see colors. The same is true out of doors at
night. In other words, the kind of vision that we have when the eye is

CHAPTER X

219

dark-adapted is totally color-blind. Another significant fact is that the fovea
is of little use in very dim light. These facts are taken to mean that dim-light
vision, or twilight vision as it is sometimes called, is rod vision and not
cone vision; or, in other words, that the rods and not the cones have the
great sensitiveness to faint light in the dark-adapted eye. The cones
perhaps become somewhat dark-adapted, but the rods far outstrip them in
this direction. The fovea has no rods and hence is of little use in very faint
light. The rods have no differential responsiveness to different
wave-lengths, remaining still in the "first stage" in the development of color
vision, and consequently no colors are seen in faint light.
Rod vision differs then from cone vision in having only one response to
every wave-length, and in adapting itself to much fainter light. No doubt,
also, it is the rods that give to peripheral vision its great sensitivity to
moving objects.
After-Images
After-images, which might better be called after-sensations, occur in other
senses than sight, but nowhere else with such definiteness. The main fact
here is that the response outlasts the stimulus. This is true of a muscle, and
it is true of a sense organ. It takes a little time to get the muscle, or the
sense organ, started, and, once it is in action, it takes a little time for it to
stop. If you direct your eyes towards the lamp, holding your hand or a book
in front of them as a screen, remove the screen for an {227} instant and
then replace it, you will continue for a short time to see the light after the
external stimulus has been cut off. This "positive after-image" is like the
main sensation, only weaker. There is also a "negative after-image", best
got by looking steadily at a black-and-white or colored figure for as long as
fifteen or twenty seconds, and then directing the eyes upon a medium gray
background. After a moment a sensation develops in which black takes the
place of white and white of black, while for each color in the original
sensation the complementary color now appears.
[Illustration: Fig. 39.--The visual response outlasts the stimulus. The
progress of time is supposed to be from left to right in the diagram. After

CHAPTER X

220

the stimulus ceases, the sensation persists for a time, at first as a positive
after-image, and then as a negative after-image, a sort of back swing.
(Figure text: stimulus, sensory response)]
This phenomenon of the negative after-image is the same as that of color
adaptation. Exposing the retina for some time to light of a certain color
adapts the retina to that color, bleaches that color sensation, and, as it
were, subtracts that color (or some of it) from the gray at which the eyes
are then directed; and gray (or white) minus a color gives the
complementary color.
Contrast
Contrast is still another effect that occurs in other senses, but most
strikingly in vision. There is considerable in common between the negative
after-image and contrast; indeed, {228} the negative after-image effect is
also called "successive contrast". After looking at a bright surface, one of
medium brightness appears dark, while this same medium brightness would
seem bright after looking at a dark surface. This is evidently adaptation
again, and is exactly parallel to what was found in regard to the
temperature sense. After looking at any color steadily, the complementary
color appears more saturated than usual; in fact, this is the way to secure
the maximum of saturation in color sensation. These are examples of
"successive contrast".
"Simultaneous contrast" is something new, not covered by adaptation, but
gives the same effects as successive contrast. If you take two pieces of the
same gray paper, and place one on a black background and the other on
white, you will find the piece on the black ground to look much brighter
than the piece on the white ground. Spots of gray on colored backgrounds
are tinged with the complementary colors. The contrast effect is most
marked at the margin adjoining the background, and grows less away from
this margin. Any two adjacent surfaces produce contrast effects in each
other, though we usually do not notice them any more than we usually
notice the after-images that occur many times in the course of the day.

CHAPTER X

221

The Sense of Hearing
Sound, like light, is physically a wave motion, though the sound vibrations
are very different from those of light. They travel 1,100 feet a second,
instead of 186,000 miles a second. Their wave-length is measured in feet
instead of in millionths of a millimeter, and their vibration frequencies are
counted in tens, hundreds and thousands per second, instead of in millions
of millions. But sound waves vary among themselves in the same three ways
that we {229} noticed in light waves: in amplitude, in wave-length (or
vibration rate), and in degree of mixture of different wave-lengths.
Difference of amplitude (or energy) of sound waves produces difference of
loudness in auditory sensation, which thus corresponds to brightness in
visual sensation. Sounds can be arranged in order of loudness, as visual
sensations can be arranged in order of brightness, both being examples of
intensity series such as can be arranged in any kind of sensation.
Difference of wave-length of sound waves produces difference in the pitch
of auditory sensation, which thus corresponds to color in visual sensation.
Pitch ranges from the lowest notes, produced by the longest audible waves,
to the highest, produced by the shortest audible waves. It is customary, in
the case of sound waves, to speak of vibration rate instead of wave-length,
the two quantities being inversely proportional to each other (in the same
conducting medium). The lowest audible sound is one of about sixteen
vibrations per second, and the highest one of about 30,000 per second,
while the waves to which the ear is most sensitive have a vibration rate of
about 1,000 to 4,000 per second. The ear begins to lose sensitiveness as
early as the age of thirty, and this loss is most noticeable at the upper limit,
which declines slowly from this age on.
Middle C of the piano (or any instrument) has a vibration rate of about
260. Go up an octave from this and you double the number of vibrations
per second; go down an octave and you halve the number of vibrations. Of
any two notes that are an octave apart, the upper has twice the vibration
rate of the lower. The whole range of audible notes, from 16 to 30,000
vibrations, thus amounts to about eleven octaves, of which music employs

CHAPTER X

222

about eight octaves, finding little use for the upper and lower extremes of
the {230} pitch series. The smallest step on the piano, called the
"semitone", is one-twelfth of an octave; but it must not be supposed that
this is the smallest difference that can be perceived. A large proportion of
people can observe a difference of four vibrations, and keen ears a
difference of less than one vibration; whereas the semitone, at middle C, is
a step of about sixteen vibrations.
Mixture of different wave-lengths, which in light causes difference of
saturation, may be said in sound to cause difference of purity. A "pure
tone" is the sensation aroused by a stimulus consisting wholly of waves of
the same length. Such a stimulus is almost unobtainable, because every
sounding body gives off, along with its fundamental waves, other waves
shorter than the fundamental and arousing tone sensations of higher pitch,
called "overtones". A piano string which, vibrating as a whole, gives 260
vibrations per second (middle C), also vibrates at the same time in halves,
thus giving 520 vibrations per second; in thirds, giving 780 per second;
and in other smaller segments. The whole stimulus given off by middle C of
the piano is thus a compound of fundamental and overtones; and the
sensation aroused by this complex stimulus is not a "pure tone" but a blend
of fundamental tone and overtones. By careful attention and training, we
can "hear out" the separate overtones from the total blend; but ordinarily
we take the blend as a unit (just as we take the taste of lemonade as a unit),
and hear it simply as middle C of a particular quality, namely the piano
quality. Another instrument will give a somewhat different combination of
overtones in the stimulus, and that means a different quality of tone in our
sensation. We do not ordinarily analyze these complex blends, but we
distinguish one from another perfectly well, and thus can tell whether a
piano or a cornet is playing. The difference between different instruments,
which we have spoken of as a {231} difference in quality or purity of tone,
is technically known as timbre; and the timbre of an instrument depends on
the admixture of shorter waves with the fundamental vibration which gives
the main pitch of a note.
Akin to the timbre of an instrument is the vowel produced by the human
mouth in any particular position. Each vowel appears to consist,

CHAPTER X

223

physically, of certain high notes produced by the resonance of the mouth
cavity. In the position for "ah", the cavity gives a certain tone; in the
position for "ee" it gives a higher tone. Meanwhile, the pitch of the voice,
determined by the vibration of the vocal cords, may remain the same or
vary in any way. The vowel tones differ from overtones in remaining the
same without regard to the pitch of the fundamental tone that is being sung
or spoken, whereas overtones move up or down along with their
fundamental. The vowels, as auditory sensations, are excellent examples of
blends, in that, though compounds, they usually remain unanalyzed and are
taken simply as units. What has been said of the vowels applies also to the
semi-vowels and continuing consonants, such as l, m, n, r, f, th, s and sh.
Other consonants are to be classed with the noises. Like a vowel, and like
the timbre of an instrument, a noise is a blend of simple tones; but the
fundamental tone in a noise-blend is not so preponderant as to give a clear
pitch to the total sound, while the other tones present are often too brief or
too unsteady to give a tonal effect.
Comparison of Sight and Hearing
The two senses of sight and hearing have many curious differences, and
one of the most curious appears in mixing different wave-lengths. Compare
the effect of throwing two colored lights together into the eye with the effect
of {232} throwing two notes together into the ear. Two notes sounded
together may give either a harmonious blend or a discord; now the discord
is peculiar to the auditory realm; mixed colors never clash, though colors
seen side by side may do so to a certain extent. A discord of tones is
characterized by imperfect blending (something unknown in color mixing),
and by roughness due to the presence of "beats" (another thing unknown in
the sense of sight). Beats are caused by the interference between sound
waves of slightly different vibration rate. If you tune two whistles one
vibration apart and sound them together, you get a tone that swells once a
second; tune them ten vibrations apart and you get ten swellings or beats
per second, and the effect is rough and disagreeable.

CHAPTER X

224

Aside from discord, a tone blend is really not such a different sort of thing
from a color blend. A chord, in which the component notes blend while they
can still, by attention and training, be "heard out of the chord", is quite
analogous with such color blends as orange, purple or bluish green. At the
same time, there is a curious difference here. By analogy with color mixing,
you would expect two notes, as C and E, when combined, to give the same
sensation as the single intermediate note D. Nothing of the kind! Were it so,
music would be very different from what it is, if indeed it were possible at
all. But the real difference between the two senses at this point is better
expressed by saying that D does not give the effect of a combination of C
and E, or, in general, that no one note ever gives the effect of a
combination or blend of notes higher and lower than itself. Homogeneous
orange light gives the sensation of a blend of red and yellow; but there is
nothing like this in the auditory sphere. In light, some wave-lengths give the
effect of simple colors, as red and yellow; and other wave-lengths the effect
of blends, as greenish yellow or bluish {233} green; but in sound, every
wave-length gives a tone which seems just as elementary as any other.
There is nothing in auditory sensation to correspond to white, no simple
sensation resulting from the combined action of all wave-lengths. Such a
combination gives noise, but nothing that seems particularly simple. There
is nothing auditory to correspond with black, for silence seems to be a
genuine absence of sensation. There are no complementary tones like the
complementary colors, no tones that destroy each other instead of
blending. In a word, auditory sensation tallies with its stimulus much more
closely than visual sensation does with its; and the main secret of this
advantage of the sense of hearing is that it has a much larger number of
elementary responses. Against the six elementary visual sensations are to
be set auditory elements to the number of hundreds or thousands. From the
fact that every distinguishable pitch gives a tone which seems as simple and
unblended as any other, the conclusion would seem to be that each was an
element; and this would mean thousands of elements. On the other hand,
the fact that tones close together in pitch sound almost alike may mean that
they have elements in common and are thus themselves compounds; but
still there would undoubtedly be hundreds of elements.

CHAPTER X

225

Both sight and hearing are served by great armies of sense cells, but the
two armies are organized on very different principles. In the retina, the
sense cells are spread out in such a way that each is affected by light from
one particular direction; and thus the retina gives excellent space
information. But each retinal cell is affected by any light that happens to
come from its particular direction. Every cone, in the central area of the
retina, makes all the elementary visual responses and gives all the possible
color sensations; so it is not strange that the number of visual {234}
elements is small. On the other hand, the ear, having no sound lens, has no
way of keeping separate the sounds from different directions (and
accordingly gives only meager indications of the direction of sound); but its
sense cells are so spread out as to be affected, some by sound of one
wavelength, others by other wave-lengths. The different tones do not all
come from the same sense cells. Some of the auditory cells give the low
tones, others the medium tones, still others the high tones; and since there
are thousands of cells, there may be thousands of elementary responses.
Theory of Hearing
The most famous theory of the action of the inner ear is the "piano theory"
of Helmholtz. The foundation of the theory is the fact that the sense cells of
the cochlea stand on the "basilar membrane", a long, narrow membrane,
stretched between bony attachments at either side, and composed partly of
fibers running crosswise, very much as the strings of a piano or harp are
stretched between two side bars. If you imagine the strings of a piano to be
the warp of a fabric and interwoven with crossing fibers, you have a fair
idea of the structure of the basilar membrane, except for the fact that the
"strings" of the basilar membrane do not differ in length anywhere like as
much as the strings of the piano must differ in order to produce the whole
range of notes. Now, a piano string can be thrown into "sympathetic
vibration", as when you put on the "loud pedal" (remove the dampers from
the strings) and then sing a note into the piano. You will find that the string
of the pitch sung has been thrown into vibration by the action of the sound
waves sung against it.

CHAPTER X

226

Now suppose the strings of the basilar membrane to be tuned to notes of all
different pitches, within the range of {235} audible vibrations: then each
string would be thrown into sympathetic vibration whenever waves of its
own vibration rate reached it by way of the outer and middle ear; and the
sense cells standing over the vibrating fibers would be shaken and excited.
The theory is very attractive because it would account so nicely for the
great number of elementary tone sensations (there are over 20,000 fibers
or strings in the basilar membrane), as well as for various other facts of
hearing--if we could only believe that the basilar membrane did vibrate in
this simple manner, fiber by fiber. But (1) the fabric into which the strings
of the membrane are woven would prevent their vibrating as freely and
independently as the theory requires; (2) the strings do not differ in length
a hundredth part of what they would need to differ in order to be tuned to
all notes from the lowest to the highest, and there is no sign of differences
in stretch or in loading of the strings to make up for their lack of difference
in length; and (3) a little model of the basilar membrane, exposed to sound
waves, is seen to be thrown into vibration, indeed, and into different forms
of vibration for waves of different length, but not by any means into the
simple sort of vibration demanded by the piano theory. This theory is
accordingly too simple, but it probably points the way towards some truer,
more complex, conception.
The fact that there are many elementary sensations of hearing is the chief
reason why the art of tones is so much more elaborate than the art of color;
for while painting might dispute with music as to which were the more
highly developed art, painting depends on form as well as color, and there
is no art of pure color at all comparable with music, which makes use
simply of tones (and noises) with their combinations and sequences.
{236}
Senses of Bodily Movement
It is a remarkable fact that some parts of the inner ear are not connected
with hearing at all, but with quite another sense, the existence of which was
formerly unsuspected. The two groups of sense cells in the vestibule--the

CHAPTER X

227

otolith organs--were formerly supposed to be the sense organ for noise; but
noise now appears to be a compound of tones, and its organ, therefore, the
cochlea. The semicircular canals, from their arrangement in three planes at
right angles to each other, were once supposed to analyze the sound
according to the direction from which it came; but no one could give
anything but the vaguest idea of how they might do this, and besides the ear
is now known to give practically no information regarding the direction of
sound, except the one fact whether it comes from the right or left, which is
given by the difference in the stimulation received by the two ears, and not
by anything that exists in either ear taken alone.
The semicircular canals have been much studied by the physiologists. They
found that injury to these structures brought lack of equilibrium and
inability to walk, swim or fly in a straight course. If, for example, the
horizontal canal in the left ear is destroyed, the animal continually deviates
to the left as he advances, and so is forced into a "circus movement". They
found that the compensatory movements normally made in reaction to a
movement impressed on the animal from without were no longer made
when the canals were destroyed. They found that something very much like
these compensatory movements could be elicited by direct stimulation of
the end-organs in the canals or of the sensory nerves leading from them.
And they found that little currents of the liquid filling the canals acted as a
stimulus to these end-organs and so aroused the {237} compensatory
movements. They were thus led to accept a view that was originally
suggested by the position of the canals in space.
[Illustration: Fig. 40.--How the sense cells in a semicircular canal are
stimulated by a water current. This current is itself an inertia back-flow,
resulting from a turning of the head in the opposite direction. (Figure text:
water current, nerve to brain)]
Each "semicircular" canal, itself considerably more than a semicircular
tube, opens into the vestibule at each end and thus amounts to a complete
circle. Therefore rotating the head must, by inertia, produce a back flow of
the fluid contents of the canal, and this current, by bending the hairs of the
sense cells in the canal, would stimulate them and give a sensation of

CHAPTER X

228

rotation, or at least a sensory nerve impulse excited by the head rotation.
When a human subject is placed, blindfolded, in a chair that can be rotated
without sound or jar, it is found that he can easily tell whenever you start to
turn him in either direction. If you keep on turning him at a constant speed,
he soon ceases to sense the movement, but if then you stop him, he says you
are starting to turn him in the opposite {238} direction. He senses the
beginning of the rotary movement because this causes the back flow
through his canals; he ceases to sense the uniform movement because
friction of the liquid in the slender canal soon abolishes the back flow by
causing the liquid to move with the canal; and he senses the stopping of
this movement because the liquid, again by inertia, continues to move in the
direction it had been moving just before when it was keeping pace with the
canal. Thus we see that there are conscious sensations of rotation from the
canals, and that these give information of the starting or stopping of a
rotation, though not of its steady continuance. Excessive stimulation of the
canals gives the sensation of dizziness.
The otolith organs in the vestibule are probably excited, not by rotary
movements, but by sudden startings and stoppings of rectilinear motion, as
in an elevator; and also by the pull of gravity when the head is held in any
position. They give information regarding the position and rectilinear
movements of the head, as the canals do of rotary head movements. Both
are important in maintaining equilibrium and motor efficiency.
The muscle sense is another sense of bodily movement; it was the "sixth
sense", so bitterly fought in the middle of the last century by those who
maintained that the five senses that were enough for our fathers ought to be
enough for us, too. The question was whether the sense of touch did not
account for all sensations of bodily movement. It was shown that there must
be something besides the skin sense, because weights were better
distinguished when "hefted" in the hand than when simply laid in the
motionless palm; and it was shown that loss of skin sensation in an arm or
leg interfered much less with the coördinated movements of the limb than
did the loss of all the sensory nerves to the limb.

CHAPTER X

229

[Illustration: Fig. 41.--(From Cajal.) A "tendon spindle," very similar to
the muscle spindle spoken of in the text, but found at the tendinous end of a
muscle instead of embedded in the muscle substance itself, "a" indicates the
tendon, and "e" the muscle fibers; "b" is a sensory axon, and "c" its
end-brush about the spindle. Let the tendon become taut in muscular
contraction, and the fine branches of the sensory axon will be squeezed and
so stimulated.]
Later, the crucial fact was established {239} that sense organs (the "muscle
spindles") existed in the muscles and were connected with sensory nerve
fibers; and that other sense organs existed in the tendons and about {240}
the joints. This sense accordingly might better be called the "muscle,
tendon and joint sense", but the shorter term, "muscle sense", bids fair to
stick. The Greek derivative, "kinesthesis", meaning "sense of movement", is
sometimes used as an equivalent; and the corresponding adjective,
"kinesthetic", is common.
The muscle sense informs us of movements of the joints and of positions of
the limbs, as well as of resistance encountered by any movement. Muscular
fatigue and soreness are sensed through the same general system of sense
organs. This sense is very important in the control of movement, both reflex
and voluntary movement. Without it, a person lacks information of where a
limb is to start with, and naturally cannot know what movement to make;
or, if a movement is in process of being executed, he has no information as
to how far the movement has progressed and cannot tell when to stop it.
Thus it is less strange than it first appears to learn that "locomotor ataxia",
a disease which shows itself in poor control of movement, is primarily a
disease affecting not the motor nerves but the sensory nerves that take care
of the muscle sense.
{241}
EXERCISES
1. Outline the chapter, rearranging the material somewhat, so as to state,
under each sense, (a) what sense cells, if any, are present in the sense

CHAPTER X

230

organ, (b) what accessory apparatus is present in the sense organ, (c) what
stimuli arouse the sense, (d) what are the elementary responses of the
sense, (e) peculiar blends occurring within the sense or between this sense
and another, (f) what can be said regarding adaptation of the sense, and
(g) what can be said regarding after-images of the sense.
2. Classify the senses according as they respond to stimuli (a) internal to
the body, (b) directly affecting the surface of the body, (c) coming from a
distance.
3. What distinctive uses are made of each sense?
4. Explore a small portion of the skin, as on the back of the hand, for cold
spots, and for pain spots.
5. Try to analyze the smooth sensation obtained by laying the finger tip on
a sheet of paper, and the rough sensation obtained by laying the finger tip
on the surface of a brush, and to describe the difference in terms of the
elementary skin sensations.
6. Is the pain sense a highly developed sense, to judge from its sense
organ? Is it highly specialized? highly sensitive? How does its peculiarity
in these respects fit it for its use?
7. Separation of taste and smell. Compare the taste of foods when the
nostrils are held closed with the taste of the same food when the nostrils
are opened.
8. Make a complete analysis of the sensations obtained from chocolate ice
cream in the mouth.
9. Peripheral vision. (a) Color sense. While your eyes are looking rigidly
straight ahead, take a bit of color in the hand and bring it slowly in from
the side, noticing what color sensation you get from it when it can first be
seen at all, and what changes in color appear as it moves from the extreme
periphery to the center of the field of view, (b) Form sense. Use printed

CHAPTER X

231

letters in the same way, noticing how far out they can be read, (c) Sense of
motion. Notice how far out a little movement of the finger can be seen. Sum
up what you have learned of the differences between central and peripheral
vision. What is the use of peripheral vision?
10. Light and dark adaptation. Go from a dimly lighted place into bright
sunlight, and immediately try for an instant to read with the sun shining
directly upon the page. Remaining in the sunlight, {242} repeat the attempt
every 10 seconds, and notice how long it takes for the eye to become
adapted to the bright light. Having become light-adapted, go back into a
dimly lighted room, and see whether dark-adaptation takes more or less
time than light-adaptation.
11. Color adaptation. Look steadily at a colored surface, and notice
whether the color fades as the exposure continues. Try looking at the color
with one eye only, and after a minute look at the color with each eye
separately, and notice whether the saturation appears the same to the eye
that has been exposed to the color, and to the eye that has been shielded.
12. Negative after-images. Look steadily for half a minute at a black cross
upon a white surface, and then turn the eyes upon a plain gray surface, and
describe what you see. (b) Look steadily for half a minute at a colored spot
upon a white or gray background, and then turn the eyes upon a gray
background, and note the color of the after-image of the spot. Repeat with a
different color, and try to reach a general statement as to the color of the
negative after-image.
13. Positive visual after-images. Look in the direction of a bright light, such
as an electric light, holding the hand as a screen before the eyes, so that
you do not see the light. Withdraw the hand for a second, exposing the eyes
to the light, and immediately screen the eyes again, and notice whether the
sensation of the light outlasts the stimulus.
14. Tactile after-images. Touch the skin lightly for an instant, and notice
whether the sensation ends as soon as the stimulus is removed. If there is
any after-image, is it positive or negative?

CHAPTER X

232

15. Tactile adaptation. Support two fingers on the edge of a table, and lay
on them a match or some other light object. Let this stimulus remain there,
motionless, and notice whether the tactile sensation remains steady or dies
out. What is the effect of making slight movements of the fingers, and so
causing the stimulus to affect fresh parts of the skin?
16. Temperature sense adaptation. Have three bowls of water, one quite
warm, one cold, one medium. After holding one hand in the warm water
and the other in the cold, transfer both simultaneously to the medium water
and compare the temperature sensations got by each hand from this water.
State the result in terms of adaptation.
17. Overtones. These can be quite easily heard in the sound of a large bell.
What use does the sense of hearing make of overtones?
REFERENCES For a somewhat fuller discussion of the topic of sensation,
see Warren's Human Psychology, 1919, pp. 151-214; and for a much fuller
discussion, see Titchener's Textbook of Psychology, 1909, pp. 46-224.
{243}
For a really thorough consideration of the facts and theories of color
vision, see J. Herbert Parsons, An Introduction to the Study of Colour
Vision, 1915.
For a more complete statement of the Ladd-Franklin theory, see the article
on "Vision", in Baldwin's Dictionary of Philosophy and Psychology, 1902.
For a recent study that has revolutionized the psychology of the sense of
smell, see Der Geruch, by Hans Henning, 1916, or a review of the same by
Professor Gamble in the American Journal of Psychology, 1921, Vol. 32,
pp. 290-296.
For an extensive discussion of the "Psychology of Sound", sec the book
with this title by Henry J. Watt, 1917.

CHAPTER X

233

For a full account of taste, see Hollingworth and Poffenberger's Sense of
Taste, 1917.
{244}

CHAPTER XI

234

CHAPTER XI
ATTENTION
HOW WE ATTEND, TO WHAT, AND WITH WHAT RESULTS
"Attention!" shouts the officer as a preliminary to some more specific
command, and the athletic starter calls out "Ready!" for the same purpose.
Both commands are designed to put the hearer in an attitude of readiness
for what is coming next. They put a stop to miscellaneous doings and clear
the way for the specific reaction that is next to be called for. They nullify
the effect of miscellaneous stimuli that are always competing for the
hearer's attention, and make him responsive only to stimuli coming from
the officer. They make the hearer clearly conscious of the officer. They
arouse in the hearer a condition of keen alertness that cannot be
maintained for more than a few seconds unless some further command
comes from the officer. In all these ways "attention" in the military sense,
or "readiness" in the athletic sense, affords a good picture of the
psychology of attention. Attention is preparatory, selective, mobile, highly
conscious. To attend to a thing is to be keenly conscious of that thing, it is
to respond to that thing and disregard other things, and it is to expect
something more from that thing.
Attention is, in a word, exploratory. To attend is to explore, or to start to
explore. Primitive attention amounts to the same as the instinct of
exploration. Its natural stimulus is anything novel or sudden, its "emotional
state" is curiosity or expectancy, and its instinctive reaction consists {245}
of exploratory movements. Its inherent impulse is to explore, examine, or
await.
Attention belongs fundamentally among the native forms of behavior. The
child does not have to learn to attend, though he must learn to attend to
many things that do not naturally get his attention. Some stimuli naturally
attract attention, and others attract attention only because of previous
experience and training. In considering the whole subject of attention, then,
we shall in part be dealing with native responses, and in part with

CHAPTER XI

235

responses that are acquired. But the great laws of attention, which will
come to light in the course of the chapter, are at the same time general
laws of reaction, and belong under the head of native characteristics.
The Stimulus, or What Attracts Attention
We can attend to anything whatever, but are more likely to attend to some
things than to others. As stimuli for attention, some objects are much more
effective than others, and the question is, in what way one object has the
advantage over another. There are several ways, several "factors of
advantage", we may call them.
Change is the greatest factor of advantage. A steady noise ceases after a
while to be noticed, but let it change in any respect and immediately it
arrests attention. The ticking of the clock is a good example: as long as it
keeps uniformly on, it is unnoticed, but if it should suddenly beat faster or
louder or in a different key, or even if it should stop altogether, it would
"wake us up" with a start. The change in the stimulus must not be too
gradual if it is to be effective, it must have a certain degree of suddenness.
It may be a change in intensity, a becoming suddenly stronger or weaker;
or it may be change in quality, as in tone, or {246} color, or odor; or it may
be a change in position, a movement in space. When one who is holding
our arm gives it a sudden squeeze to attract our attention, that is a change
of intensity; when we step from the bank into the water, the sudden change
from warmth to cold, that gets our attention without fail, is a change of
quality; and something crawling on the skin attracts attention by virtue of
its motion. Anything moving in the field of view is also an unfailing
stimulus to attention.
Strength, or high intensity of a stimulus, is another important factor of
advantage. Other things being equal, a strong stimulus will attract
attention before a weak one. A loud noise has the advantage over a low
murmur, and a bright flash of light over a faint twinkle.
In the case of visible objects, size has about the same effect as intensity.
The large features of the landscape are noticed before the little details. The

CHAPTER XI

236

advertiser uses large type, and pays for big space in the newspaper, in the
effort to attract the attention of the reader.
[Footnote: Often he pays more than the space is worth; at least doubling
the size of his "ad" will not, on the whole, double the amount of attention he
gets, or the number of readers whose attention he will catch. The "attention
value" of an advertisement has been found by Strong to increase, not as fast
as the increase in space, but about as the square root of the space
occupied.]
Another similar factor is repetition. Cover a billboard with several copies
of the same picture, and it attracts more attention than a single one of the
pictures would. Repeat a "motive" in the decoration of a building, and it is
more likely to be noticed. Repeat a cry or call several times, and after a
while it may be noticed, though not at first. The "summation of stimuli" has
much the same effect as increasing the intensity of a single stimulus.
If, however, a stimulus is repeated or continued for a long time, it will
probably cease to hold attention, because of its {247} monotony, or, in
other words, because it lacks the element of change.
Striking quality is an advantage, quite apart from the matter of intensity.
Saturated colors, though no stronger in intensity of light than pale colors,
are stronger stimuli for attention. High notes are more striking than low.
Itch, tickle and pain get attention in preference to smooth touch. "Striking"
cannot be defined in physical terms, but simply refers to the fact that some
kinds of stimulus get attention better than others.
Definite form has the advantage over what is vague. A small, sharply
defined object, that stands out from its background, attracts the eye more
than a broad, indefinite expanse of light such as the sky. In the realm of
sound, "form" is represented by rhythm or tune, and by other definite
sequences of sound, such as occur in the jingles that catch the little child's
ear.

CHAPTER XI

237

The factors of advantage so far mentioned are native, and a stimulus
possessing one or more of them is a natural attention-stimulus. But the
individual also learns what is worth noticing, and what is not, and thus
forms habits of attention, as well as habits of inattention. The automobile
driver forms the habit of attending to the sound of his motor, the botanist
forms the habit of noticing such inconspicuous objects as the lichens on the
tree trunks. On the other hand, any one forms the habit of not noticing
repeated stimuli that have no importance for him. Move into a house next
the railroad, and at first you notice every train that passes; even at night
you awake with a start, dreaming that some monster is pursuing you; but
after a few days the trains disturb you very little, night or day. The general
rule covering attention habits is this: anything that you have to work with,
or like to play with, acquires the power to attract your attention, while
anything that you do nothing {248} with loses whatever hold on your
attention it may have possessed by virtue of its intensity, quality, etc.
Besides these permanent habits of attention, there are temporary
adjustments determined by the momentary interest or desire. Stimuli
relevant to the momentary interest have an unwonted hold upon attention,
while things out of line with this interest may escape attention altogether,
even though the same things would ordinarily be noticed. What you shall
notice in the store window is governed by what you are looking for as much
as by the prominence of the object in the total display. When you are angry
with a person, you notice bad points about him that you usually overlook,
and any aroused desire adjusts or "sets" attention in a similar way. The
desire or interest of the moment facilitates attention to certain stimuli and
inhibitsattention to others, and is thus an important factor of advantage.
The interest of the moment is often represented by a question. Ask yourself
what spots of red there are in the field of view, and immediately various red
spots jump out and strike the eye; ask yourself what pressure sensations
you are getting from the skin, and immediately several obtrude themselves.
A question sets attention towards whatever may furnish an answer.
To sum up, we may say that three general factors of advantage determine
the power of any stimulus to attract attention. There is the native factor,

CHAPTER XI

238

consisting of change, intensity, striking quality, and definite form; there is
the factor of habit, dependent on past experience; and there is the factor of
present interest and desire.
The Motor Reaction in Attention
Attention is obviously a reaction of the individual to the stimulus that gets
his attention; and it is in part a motor {249} reaction. The movements that
occur in attending to an object are such as to afford a better view of it, or a
better hearing of it, or, in general, such as to bring the sense organs to
bear on it as efficiently as possible.
We may distinguish two sorts of motor reaction that occur in attention: the
general attentive attitude, and the special adjustments of the sense organs.
An audience absorbed in a speech or musical performance gives a good
picture of the general attentive attitude. You notice that most people look
fixedly towards the speaker, as if listening with their eyes, and that many of
them lean forward as if it were important to get just as close as possible.
All the little restless movements cease, so that you could "hear a pin drop",
and at the tensest moments even the breath is checked. The attitude of
attention is one of tense immobility, with the whole body oriented towards
the object of attention. When the object of attention is something not
present but thought of, a somewhat similar rigid attitude is assumed; the
body is apt to lean forward, the neck to be held stiff, and the eyes to "stare
at vacancy", i.e., to be fixed on some convenient object as a mere resting
place, while attention is fixed outside the visual field altogether.
But we spoke of attention as mobile, and it would be strange if its mobility
did not show itself in the motor reaction. It does in fact show itself in the
sense organ adjustments which amount to exploratory reactions. Attention
to an object in the hand is shown by "feeling of it", to a substance in the
mouth by tasting movements, to an odor by sniffing movements, to a sound
by cocking the head and turning the eyes towards the source of sound. The
most instructive of this type of attention-reactions are those of the eyes. The
eye is focused on the object that arouses attention, the lens being
accommodated for its distance by the action of the little ciliary muscle

CHAPTER XI

239

inside the {250} eyeball; the two eyes are converged upon the object, so
that the light from it strikes the fovea or best part of each retina; and the
eyes are also turned up, down or sidewise, so as, again, to receive the light
from the object upon the fovea.
This last class of eye movements is specially instructive and shows specially
well the mobility of attention. Let a bright or moving object appear
somewhere in the field of view--immediately the eyes turn towards it with a
quick jump, fixate it for a few seconds and then jump elsewhere unless the
object is found to be specially significant. Watch the eyes of one who is
looking at a picture or scene of any sort, and you will see his eyes jumping
hither and thither, as his attention shifts from one part of the scene to
another. Ask him to abstain from this jumpy movement and let his eyes
"sweep over" the scene, and he will confidently try to follow your
instructions, but if you watch his eyes you will find them still jumping. In
fact, "sweeping the glance" is a myth. It cannot be done. At least, there is
only one case in which it can be done, and that is when there is a moving
object to look at. Given an object moving at a moderate speed across the
field of view, and the eyes can follow it and keep pace with it pretty
accurately. But without the moving object as stimulus, the eyes can only
execute the jump movement. There are thus two types of exploratory eye
movement: the "jump" in passing from one object to another, and the
"pursuit movement" in examining a moving object.
In reading, the eye moves by a series of short jumps from left to right along
the first line of print, makes a long jump back to the beginning of the
second line and another series of short jumps along that line, and so on. To
appreciate the value of this jerky movement, we need to understand that
each short jump occupies but a thirtieth to a fiftieth {251} of a second,
while the "fixation pauses" between jumps last much longer, with the result
that over ninety per cent. of the time spent on a line of print is fixation time,
and less than ten per cent, is occupied in jumping from one fixation to the
next. Now, it has been found that nothing of any consequence is seen during
the eye jumps, and that the real seeing takes place only during the fixations.
The jump movement, therefore, is simply a means of passing from one
fixation to another with the least possible loss of time.

CHAPTER XI

240

The eye sees an object distinctly only when at rest with respect to the
object. If the object is still, the eye must be still to see it distinctly, and to
see its different parts must fixate one after the other, jumping from one part
to another. But if the object is in motion, the eye may still be able to see it
distinctly by means of the pursuit movement, which is a sort of moving
fixation.
The Shifting of Attention
Eye movement affords a good picture of the mobility of attention.
Ordinarily the eye shifts frequently from one part of the field of view to
another. When simply exploring a scene, it shifts about in what seems an
indiscriminate way, though really following the principle of deserting each
object as soon as it has been examined, and jumping to that other object
which next has the advantage on account of movement, brightness, color,
definite form, or habit of attention. In reading, however, the eye is
governed by a definite interest, and moves consecutively along the series of
words, instead of shifting irregularly about the page.
A moving object, or an object that is doing something, or even a complex
object that presents a number of parts to be examined in turn, can hold the
eye for some time. But it is almost impossible to hold the eye fixed for any
length of time on a simple, motionless, unchanging object.
{252}
Attention is mobile because it is exploratory; it continually seeks something
fresh for examination. In the presence of a complex of sights and sounds
and touch stimuli, it tends to shift every second or two from one part of the
situation to another. Even if you are lying in bed with your eyes closed, the
movement of attention still appears in the rapid succession of thoughts and
images, and some shift usually occurs as often as once a second.
A few simple experiments will serve to throw the shifting of attention into
clearer relief. Look fixedly at a single letter written on a blank sheet of
paper, and notice how one part after another of the letter stands out; notice

CHAPTER XI

241

also that attention does not stick absolutely to the letter, since thoughts
obtrude themselves at intervals.
[Illustration:
OOOOOOOOOOOOO
Fig. 42.--A dot figure, from Sanford. Look steadily at it.]
Or, make a "dot figure", composed of six or eight or more dots arranged
either regularly or irregularly, and look steadily at the collection. Probably
you will find that the dots seem to fall into figures and groups, and that the
grouping changes frequently. Objectively, of course, the dots are grouped
in one way as much as another, so that any particular grouping is your own
doing. The objective stimulus, in other words, is capable of arousing
several grouping reactions on your part, and does arouse different
reactions one after another
Shifting also appears in looking at an {253} "ambiguous figure", drawn so
as to represent equally well a solid object in either of two different
positions. The transparent cube, showing near and far edges alike, is a
good example. Look steadily at such a drawing, and the cube will appear to
shift its position from time to time. Numerous such figures can be
constructed; the most celebrated is the ambiguous staircase. Look steadily
at it, and suddenly you see the under side of a flight of stairs, instead of the
upper; and if you keep on looking steadily, it shifts back and forth between
these two positions.
[Illustration: Fig. 43.--The ambiguous cube figure.]
[Illustration: Fig. 44.--The ambiguous staircase figure.]
A still more striking case of shifting goes by the name of "binocular
rivalry", and occurs when colors or figures that we cannot combine into a
single picture are presented, {254} one to one eye, and the other to the
corresponding part of the other retina. Hold red glass close in front of one

CHAPTER XI

242

eye and blue before the other, and look through both at once towards a
bright background, and you will see red part of the time and blue part of
the time, the two alternating as in the case of ambiguous figures.
[Illustration: Fig. 45.--Another ambiguous figure, which can be seen in
three ways.]
The stereoscope is a great convenience in applying inconsistent stimuli to
the two eyes, and by aid of this instrument a great variety of experiments
can be made. It is thus found that, if the field before one eye is a plain
color, while the other, of a different color, has any little figure on it, this
figure has a great advantage over the rival plain color and stays in sight
most of the time. Anything moving in one field has a similar advantage, and
a bright field has the advantage over a darker one. Thus the same factors of
advantage hold good in binocular rivalry as in native attention generally.
A different kind of shifting appears in what is called "fluctuation of
attention". Make a light gray smudge on a white sheet of paper, and place
this at such a distance that the gray will be barely distinguishable from the
white {255} background. Looking steadily at the smudge, you will find it to
disappear and reappear periodically. Or, place your watch at such a
distance that its ticking is barely audible, and you will find the sound to go
out and come back at intervals. The fluctuation probably represents
periodic fatigue and recovery at the brain synapses concerned in observing
the faint stimulus.
Shiftings of the fluctuation type, or of the rivalry type either, are not to be
regarded as quite the same sort of thing as the ordinary shiftings of
attention. The more typical movement of attention is illustrated by the eye
movements in examining a scene, or by the sequence of ideas and images in
thinking or dreaming. Rivalry and fluctuation differ from this typical
shifting of attention in several ways:
(1) The typical movement of attention is quicker than the oscillation in
rivalry or fluctuation. In rivalry, each appearance may last for many
seconds before giving way to the other, whereas the more typical shift of

CHAPTER XI

243

attention occurs every second or so. In fact, during a rivalry or fluctuation
experiment, you may observe thoughts coming and going at the same time,
and at a more rapid rate than the changes in the object looked at. Attention
does not really hold steady during the whole time that a single appearance
of an ambiguous figure persists.
(2) Rivalry shifts are influenced very little, if at all, by the factor of
momentary desire or interest, and are very little subject to control.
(3) In rivalry, the color that disappears goes out entirely, and in looking at
a dot figure or ambiguous figure you get the same effect, since the grouping
or appearance that gives way to another vanishes itself for the time being.
But when, in exploring a scene with the eyes, you turn from one object to
another, the object left behind simply retires to the background, without
disappearing altogether; and, {256} in the same way, when attention shifts
from one noise to another, the first noise does not lapse altogether but
remains vaguely heard. Or when, in thinking of a number of people, one
after another comes to mind, the first one does not go out of mind
altogether when attention moves to the next, but remains still vaguely
present for a few moments.
Laws of Attention and Laws of Reaction in General
Shifting occurs also in reflex action. Let two stimuli be acting at once, the
one calling for one reflex and the other for the opposed reflex (as flexion
and extension of the same limb), and the result is that only one of these
reactions will occur at the same time, the other being completely inhibited;
but the inhibited reflex gets its turn shortly, provided the two stimuli
continue to act, and, in fact, the two reactions may alternate in a way that
reminds us of binocular rivalry or ambiguous figures. Three fundamental
laws of reaction here come to light.
(1) The law of selection: of two or more inconsistent responses to the same
situation (or complex of stimuli), only one is made at the same time.

CHAPTER XI

244

(2) The law of advantage: one of the alternative responses has an initial
advantage over the others, due to such factors as intensity and change in
the stimulus, or to habits of reaction.
(3) The law of shifting: the response that has the initial advantage loses its
advantage shortly, and an alternative response is made, provided the
situation remains the same.
These three laws hold good of reactions at all levels, from reflex action to
rational thinking.
The mobility of attention obeys these same laws; only, attention is livelier
and freer in its movements than reflex action or than the shifting in rivalry.
Attention is more mobile and less bound to rigid rules.
{257}
Sustained Attention
The mobility of attention is only half the story. When we speak, for
instance, of a student as having good powers of attention, we are not
thinking of mobility but rather of the opposite.
Eye movement, which we employed before as a picture of the movement of
attention, affords also a picture of sustained attention. Remember how the
eye moves in reading. Every second it shifts, but still it keeps to the line of
print. Just so, attention keeps moving forward in the story we are reading,
but sticks to the story. The more absorbed we are in the story, the more
rapidly we read. Attention is sustained here, and still it moves. Sustained
attention is not glued to one point, by any means, but is simply confined to
a given object or theme, within which its motion may be as lively as ever.
What is it, then, that sustains attention? Evidently it is the factor of present
desire or interest, already mentioned. It is a reaction-tendency, aroused to
activity by some stimulus or other, unable to reach its goal instantly, but
persisting in activity for a while and facilitating responses that are in its

CHAPTER XI

245

line, while inhibiting others. Such a tendency facilitates response, i.e.,
attention, to certain stimuli, and inhibits attention to others, thus causing
them to be overlooked and neglected.
For the student, the ideal attention-sustainer is an interest in the matter
presented. If, however, he cannot get up any absorbing interest in the
subject-matter at once, he may generate the necessary motive force by
taking the lesson as a "stunt", as something to be mastered, a spur to his
self-assertion. In the old days, fear was often the motive force relied upon
in the schoolroom, and the switch hanging {258} behind the efficient
teacher's desk was the stimulus to sustained attention. There must be some
tendency aroused if attention is to be sustained. The mastery impulse is
certainly superior to fear for the purpose, but better than either is a
genuine interest in the subject studied.
In order to get up a genuine interest in a subject--an objective or inherent
interest--it is usually necessary to penetrate into the subject for some little
distance. The subject may not appeal to any of our native impulses, or to
any interest that has been previously acquired, and how then are we to hold
attention to it long enough to discover its inherent interest? Curiosity will
give us a start, but is too easily satisfied to carry us far. Fear of punishment
or disapproval, hope of reward or praise, being put on our mettle, or
realizing the necessity of this subject for our future success, may keep us
going till we find the subject attractive in itself.
So, when the little child is learning to read, the printed characters have so
little attractiveness in themselves that he naturally turns away from them
after a brief exploration. But, because he is scolded when his mind wanders
from those marks, because other children make fun of his blunders,
because, when he reads correctly, he feels the glow of success and of
applause, he does hold himself to the printed page till he is able to read a
little, after which his interest in what he is reading is sufficient, without
extraneous motives, to keep his nose between the covers of the story book
more, perhaps, than is good for him. The little child, here, is the type of the
successful student.

CHAPTER XI

246

Attention to a subject thus passes through three stages in its development.
First comes the instinctive exploratory sort of attention, favored by the
native factors of advantage. Next comes the stage of forced attention,
driven by {259} extraneous motives, such as fear or self-assertion. Finally
arrives the stage of objective interest. In the first and last stages attention is
spontaneous, in the middle stage forced. The middle stage is often called
that of voluntary attention, since effort has to be exerted to sustain
attention, while the first and last stages, being free from effort, may be
called involuntary.
Distraction
Distraction is an important topic for consideration in connection with
sustained attention. A distraction is a stimulus that attracts attention away
from the thing to which we mean to attend. There are always competing
stimuli, and the various factors of advantage, especially desire or interest,
determine which stimulus shall get attention at any moment.
In the excited insane condition known as "mania" or the "manic state", the
patient is excessively distractible. He commences to tell you something, all
interest in what he has to say, but, if you pull out your watch while he is
talking, he drops his story in the middle of a sentence and shifts to some
remark about the watch. He seems to have no impulse persistent enough to
hold his thoughts steady. There are contrary insane conditions in which it
is almost impossible to distract the patient from his own inner broodings,
so much is he absorbed in his own troubles.
Distraction is a favorite topic for experiment in the laboratory. The subject
is put to work adding or typewriting, and works for a time in quiet, after
which disturbances are introduced. A bell rings, a phonograph record is
played, perhaps a perfect bedlam of noise is let loose; with the curious
result that the subject, only momentarily distracted, accomplishes more
work rather than less. The distraction has acted as a stimulus to greater
effort, and by this effort {260} is overcame. This does not always happen so
in real life, but it shows the possibilities of sustained attention.

CHAPTER XI

247

There are several ways of overcoming a distraction. First, greater energy
may be thrown into the task one is trying to perform. The extra effort is apt
to show itself in gritting the teeth, reading or speaking aloud, and similar
muscular activity which, while entirely unnecessary for executing the task
in hand, helps by keeping the main stream of energy directed into the task
instead of toward the distracting stimuli. Effort is necessary when the main
task is uninteresting, or when the distraction is specially attractive, or even
when the distraction is something new and strange and likely to arouse
curiosity. But one may grow accustomed or "adapted" to an oft-recurring
distraction, so as to sidetrack it without effort; in other words, a habit of
inattention to the distracting stimulus may be formed. There is another,
quite different way of overcoming a distraction, which works very well
where it can be employed, and that is to couple the distraction to the main
task, so as to deal with both together. An example is seen in piano playing.
The beginner at the piano likes to play with the right band alone, because
striking a note with the left hand distracts him from striking the proper note
with the right. But, after practice, he couples the two hands, strikes the bass
note of a chord with the left hand while his right strikes the other notes of
the same chord, and much prefers two-handed to one-handed playing. In
short, to overcome a distraction, you either sidetrack it or else couple it to
your main task.
Doing Two Things at Once
The subject of distraction brings to mind the question that is often asked,
"Can any one do two things at once?" In this form, the question admits of
but one answer, for we {261} are always doing at least two things at once,
provided we are doing anything else besides breathing. We have no trouble
in breathing and walking at the same time, nor in seeing while breathing
and walking, nor even in thinking at the same time. But breathing, walking,
and seeing are so automatic as to require no attention. The more important
question then, is whether we can do two things at once, when each demands
careful attention.
The redoubtable Julius Caesar, of happy memory, is said to have been able
to dictate at once to several copyists. Now, Caesar's copyists were not

CHAPTER XI

248

stenographers, but wrote in long-hand, so that he could speak much faster
than they could write. What he did, accordingly, was undoubtedly to give
the first copyist a start on the first letter he wished to send, then turn to the
second and give him a start on the second letter, and so on, getting back to
the first in time to keep him busy. Quite an intellectual feat, certainly! But
not a feat requiring absolutely simultaneous attention to several different
matters. In a small way, any one can do something of the same kind. It is
not impossible to add columns of numbers while reciting a familiar poem;
you get the poem started and then let it run on automatically for a few
words while you add a few numbers, switch back to the poem and then back
to the adding, and so on. But in all this there is no doing of two things,
attentively, at the same instant of time.
You may be able, however, to combine two acts into a single coördinated
act, in the way just described under the head of distraction, and give
undivided attention to this compound act.
The Span of Attention
Similar to the question whether we can attentively perform more than a
single act at a time is the question of {262} how many different objects we
can attend to at once. The "span of attention" for objects of any given kind
is measured by discovering how many such objects can be clearly seen, or
heard, or felt, in a single instant of time. Measurement of this "span" is one
of the oldest experiments in psychology. Place a number of marbles in a
little box, take a single peek into the box and see if you know how many
marbles are there. Four or five you can get in a single glance, but with
more there you become uncertain.
In the laboratory we have "exposure apparatus" for displaying a card for a
fifth of a second or less, just enough time for a single glance. Make a
number of dots or strokes on the card and see whether the subject knows
the number on sight. He can tell four or five, and beyond that makes many
mistakes.

CHAPTER XI

249

Expose letters not making any word and he can read about four at a
glance. But if the letters make familiar words, he can read three or four
words at a glance. If the words make a familiar phrase, he gets a phrase of
several words, containing as many as twenty letters, at a single glance.
Expose a number of little squares of different colors, and a well-trained
subject will report correctly as many as five colors, though he cannot reach
this number every time.
Summary of the Laws of Attention
Bringing together now what we have learned regarding the higher and
more difficult forms of attention, as revealed by sustained attention and
work under distraction, by the span of attention and by trying to do two
things at once, we find the previously stated three laws of attention further
illustrated, and a couple of new laws making their appearance.
(1) The law of selection still holds good in these more {263} difficult
performances, since only one attentive response is made at the same instant
of time. Automatic activities may be simultaneously going on, but any two
attentive responses seem to be inconsistent with each other, so that the
making of one excludes the other, in accordance with the general law of
selection.
What shall we say, however, of reading four disconnected letters at the
same time, or of seeing clearly four colors at the same time? Here, it would
seem, several things are separately attended to at once. The several things
are similar, and close together, and the responses required are all simple
and much alike. Such responses, under such very favorable conditions, are
perhaps, then, not inconsistent with each other, so that two, three, or even
four such attentive responses may be made at the same time.
(2) The law of advantage holds good, as illustrated by the fact that some
distractions are harder to resist than others.

CHAPTER XI

250

(3) The law of shifting holds good, as illustrated by the constant movement
of attention, even when it is "sustained", and by the alternation between
two activities when we are trying to carry them both along simultaneously.
(4) The law of sustained attention, or of tendency in attention, is the same
old law of tendency that has shown itself repeatedly in earlier chapters. A
tendency, when aroused to activity, facilitates responses that are in its line
and inhibits others. A tendency is thus a strong factor of advantage, and it
limits the shifting of attention.
(5) A new law has come to light, the law of combination, which reads as
follows: a single response may be made to two or more stimuli; or, two or
more stimuli may arouse a single joint response.
Even though, in accordance with the law of selection, only one attentive
response is made at the same time, more than {264} one stimulus may be
dealt with by this single attentive response. Groups of four dots are grasped
as units, familiar words are grasped as units. Notice that these units are
our own units, not external units. Physically, a row of six dots is as much a
unit as a row of four, but we grasp the four as a unit in a way that we
cannot apply to the six. Physically, six letters are as much a unit when they
do not form a word as when they do; but we can make a unitary response to
the six in the one case and not in the other. The response is a unit, though
aroused by a number of separate stimuli.
The law of combination, from its name, is open to a possible misconception,
as if we reached out and grasped and combined the stimuli, whereas
ordinarily we do nothing to the stimuli, except to see them and recognize
them, or in some such way respond to them. The combination is something
that happens in us; it is our response. If the expression were not so
cumbersome, we might more accurately name this law that of "unitary
response to a plurality of stimuli".
Sometimes, indeed, we do make an actual motor response to two or more
stimuli, as when we strike a chord of several notes on the piano. The law of
combination still holds good here, since the movements of the two hands

CHAPTER XI

251

are coördinated into a single act, which is thought of as a unit ("striking a
chord"), attended to as a unit, and executed as a unit. Such coördinated
movements may be called "higher motor units", and we shall find much to
say regarding them when we come to the subject of learned reactions. The
law of combination, all in all, will be found later to have extreme
importance in learned reactions.
Passing now to another side of the study of attention, we shall immediately
come across a sixth law to add to our list.
{265}
Attention and Degree of Consciousness
Up to this point, the introspective side of the psychology of attention has
not been considered. One of the surest of all introspective observations
belongs right here, to the effect that we are more conscious of that to which
we are attending than of anything else. Of two stimuli acting at once upon
us, we are the more conscious of that one which catches our attention; of
two acts that we perform simultaneously, that one is more conscious that is
performed attentively.
We need not be entirely unconscious of the act or the stimulus to which we
are not attending. We may be dimly conscious of it. There are degrees of
consciousness. Suppose, for example, you are looking out of the window
while "lost in thought". You are most conscious of the matter of your
thoughts, but conscious to a degree of what you see out of the window.
Your eyes are focused on some particular object outside, and you are more
conscious of this than of other objects seen in indirect vision, though even
of these last you are not altogether unconscious. Consciousness shades off
from high light to dim background.
The "field of attention" is the maximum or high light of consciousness; it
comprises the object under attentive observation, the reaction attentively
performed. The "field of consciousness" includes the field of attention and
much besides. It includes objects of which we are vaguely aware, desires

CHAPTER XI

252

active but not clearly formulated, feelings of pleasantness or
unpleasantness, of tension, excitement, confidence, etc.
Apparently the field of consciousness shades off gradually into the field of
unconscious activity. Some physiological processes go on unconsciously,
and very habitual movements may be almost or entirely unconscious. The
boundary {266} between what is vaguely conscious and what is entirely
unconscious is necessarily very vague itself, but the probability is that the
field of consciousness is broader than we usually suspect, and that many
activities that we ordinarily think of as unconscious, because we do not
observe them at the time nor remember them later, lie really near the
margin of the field of consciousness, but inside that field. "Unconscious
motives", such as spite or pride often seem to be, are probably vaguely
conscious rather than unconscious. We shall return to the fascinating topic
of the unconscious at the close of the book.
Degree of consciousness does not always tally with intensity of sensation or
energy of muscular action. You may be more conscious of a slight but
significant sound than of much louder noises occurring at the same time.
You may be more conscious of a delicate finger movement than of a strong
contraction of big muscles occurring at the same time. Degree of
consciousness goes with degree of mental activity. Of all the reactions we
are making at the same time--and usually there are several--the most active
in a mental way is the most conscious. The slight sound arouses intense
mental response because it means something of importance--like the faint
cry of the baby upstairs, noticed instead of the loud noises of the street. The
delicate finger movement aims at some difficult result, while the big
muscles may be doing their accustomed work automatically.
It is not always the most efficient mental process that is most conscious;
indeed, practising an act makes it both more efficient and less conscious. It
is, rather, the less efficient processes that require attention, because they
require mental work to keep them going straight.
Our sixth law of attention, emerging from this introspective study, is
naturally of a different style from the remainder of the list, which were

CHAPTER XI

253

objectively observed; yet it {267} is no less certain and perhaps no less
significant. It may be called:
(6) The law of degrees of consciousness, and thus stated: An attentive
response is conscious to a higher degree than any inattentive response made
at the same time. An inattentive response may be dimly conscious or,
perhaps, altogether unconscious. The less familiar the response, and the
higher it stands in the scale of mental performances, the more attentive it
is, and the more conscious.
The Management of Attention
Attentive observation is more trustworthy than inattentive, and also gives
more facts. Attentive movement is more accurate than inattentive, and may
be quicker as well. Attentive study gives quicker learning than inattentive,
and at the same time fixes the facts more durably.
Shall we say, then, "Do everything attentively"? But that is impossible. We
sense so many stimuli at once that we could not possibly attend to all of
them. We do several things at once, and cannot give attention to them all. A
skilful performance consists of many parts, and we cannot possibly give
careful attention to all the parts. Attention is necessarily selective, and the
best advice is, not simply to "be attentive", but to attend to the right things.
In observation, the best plan is obviously to decide beforehand exactly what
needs to be observed, and then to focus attention on this precise point. That
is the principle underlying the remarkably sure and keen observation of the
scientist. Reading may be called a kind of observation, since the reader is
looking for what the author has to tell; and the rule that holds for other
observation holds also for reading. That is to say that the reader finds the
most when he knows just what he is looking for. We can learn {268}
something here from story-reading, which is the most efficient sort of
reading, in the sense that you get the point of the story better than that of
more serious reading matter, the reason being that attention is always
pressing forward in the story, looking for something very definite. You want
to know how the hero gets out of the fix he is in, and you press forward and

CHAPTER XI

254

find out with great certainty and little loss of time. The best readers of
serious matter have a similar eagerness to discover what the author has to
say; they get the author's question, and press on to find his answer. Such
readers are both quick and retentive. The dawdling reader, who simply
spends so much time and covers so many pages, in the vague hope that
something will stick, does not remember the point because he never got the
point, and never got it because he wasn't looking for it.
In skilled movement, or skilled action of any sort, the best rule is to fix
attention on the end-result or, if the process is long, on the result that
immediately needs to be accomplished. "Keep your eye on the ball" when
the end just now to be achieved is hitting the ball. Attention to the details of
the process, though necessary in learning a skilled movement, is distracting
and confusing after skill has been acquired. The runner does not attend to
his legs, but to the goal or, if that is still distant, to the runner just ahead of
him.
Theory of Attention
The chief facts to take account of in attempting to form a conception of the
brain action in attention are mobility, persistence in spite of mobility, and
focusing.
The mobility of attention must mean that brain activities are in constant
flux, with nerve currents continually shooting hither and thither and
arousing ever fresh groups of neurones; but sustained attention means that
a brain {269} activity (representing the desire or interest or
reaction-tendency dominant at the time) may persist and limit the range of
the mobile activities, by facilitating some of these and inhibiting others.
The "focusing" of mental activity is more difficult to translate into neural
terms. The fact to be translated is that, while several mental activities may
go on at once, only one occupies the focus of attention. This must mean
that, while several brain activities go on at once, one is superior in some
way to the rest. The superiority might lie in greater intensity of neurone
action, or in greater extent; that is, one brain activity is bigger in some way

CHAPTER XI

255

than any other occurring at the same time--bigger either because the
neurones in it are working more energetically or because it includes a
larger number of active neurones.
But why should not two equally big brain activities sometimes occur at the
same moment, and attention thus be divided? The only promising
hypothesis that has been offered to explain the absence of divided attention
is that of "neurone drainage", according to which one or the other of two
neurone groups, simultaneously aroused to activity, drains off the energy
from the other, so putting a quietus on it. Unfortunately, this hypothesis
explains too much, for it would make it impossible for minor brain
activities to go on at the same time as the major one, and that would mean
that only one thing could be done at a time, and that the field of
consciousness was no broader than the field of attention. On the whole, we
must admit that we do not know exactly what the focusing of attention can
mean in brain terms.
{270}
EXERCISES
1. Outline the chapter, in the form of a number of "laws", putting under
each law the chief facts that belong there.
2. See if you can verify, by watching another person's eyes, the statements
made on page 250 regarding eye movements.
3. Choose a spot where there is a good deal going on, stay there for five
minutes and jot down the things that attract your attention. Classify the
stimuli under the several "factors of advantage".
4. Mention some stimulus to which you have a habit of attention, and one to
which you have a habit of inattention.
5. Close the eyes, and direct attention to the field of cutaneous and
kinesthetic sensations. Do sensations emerge of which you are ordinarily

CHAPTER XI

256

only dimly conscious? Does shifting occur?
6. Of the several factors of advantage, which would be most effective in
catching another person's attention, and which in holding his attention?
7. How does attention, in a blind person, probably differ from that of a
seeing person?
8. Doing two things at once. Prepare several columns of one-place
numbers, ten digits in a column. Try to add these columns, at the same time
reciting a familiar poem, and notice how you manage it, and how accurate
your work is.
9. Consider what would be the best way to secure sustained attention to
some sort of work from which your mind is apt to wander.
REFERENCES
Walter B. Pillsbury gives a full treatment of the subject in his book on
Attention, 1908, and a condensed account of the matter in Chapter V of his
Essentials of Psychology, 2nd edition, 1920.
Another full treatment is that of Titchener, in his Textbook of Psychology,
1909, pp. 265-302.
On the topic of distraction, see John J. B. Morgan's Overcoming of
Distraction and Other Resistances, 1916.
{271}

CHAPTER XII

257

CHAPTER XII
INTELLIGENCE
HOW INTELLIGENCE IS MEASURED, WHAT IT CONSISTS IN AND
EVIDENCE OF ITS BEING LARGELY A MATTER OF HEREDITY
Before leaving the general topic of native traits and passing to the process
of learning or acquiring traits, we need to complete our picture of the
native mental constitution by adding intelligence to reflex action, instinct,
emotion, feeling, sensation and attention. Man is an intelligent animal by
nature. The fact that he is the most intelligent of animals is due to his native
constitution, as the fact that, among the lower animals, some species are
more intelligent than others is due to the native constitution of each
species. A rat has more intelligence than a frog, a dog than a rat, a monkey
than a dog, and a man than a monkey, because of their native constitutions
as members of their respective species.
But the different individuals belonging to the same species are not all equal
in intelligence, any more than in size or strength or vitality. Some dogs are
more intelligent than others, and the same is notably true of men. Now, are
these differences between members of the same species due to heredity or
environment? This question we can better approach after considering the
methods by which psychologists undertake to measure intelligence; and an
analysis of these methods may also serve to indicate what is included under
the term "intelligence".
{272}
Intelligence Tests
Not far from the year 1900 the school authorities of the city of Paris,
desiring to know whether the backwardness of many children in school
resulted from inattention, mischievousness and similar difficulties of a
moral nature, or from genuine inability to learn, put the problem into the
hands of Alfred Binet, a leading psychologist of the day; and within a few

CHAPTER XII

258

years thereafter he and a collaborator brought out the now famous
Binet-Simon tests for intelligence. In devising these tests, Binet's plan was
to leave school knowledge to one side, and look for information and skill
picked up by the child from his elders and playmates in the ordinary
experience of life. Further, Binet wisely decided not to seek for any single
test for so broad a matter as intelligence, but rather to employ many brief
tests and give the child plenty of chances to demonstrate what he had
learned and what he could do. These little tests were graded in difficulty
from the level of the three-year-old to that of the twelve-year-old, and the
general plan was to determine how far up the scale the child could
successfully pass the tests.
These were not the first tests in existence by any means, but they were the
first attempt at a measure of general intelligence, and they proved
extraordinarily useful. They have been added to and revised by other
psychologists, notably by Terman in America, who has extended the scale
of tests up to the adult level. A few samples from Terman's revision will
give an idea of the character of the Binet tests.
From the tests for three-year-olds: Naming familiar objects--the child must
name correctly at least three of five common objects that are shown him.
Six-year test: Finding omissions in pictures of faces, from which the nose,
or one eye, etc., is left out. Four such pictures are shown, and three correct
responses are required to pass the test.
Eight-year test: Tell how wood and coal are alike; and so with three other
pairs of familiar things; two out of four correct responses are required to
pass the test.
{273}
Twelve-year test: Vocabulary test--rough definitions showing the child's
understanding of forty words out of a standard list of one hundred.

CHAPTER XII

259

The question may be raised, "Why such arbitrary standards-three out of
five required here, two out of four there, forty out of a hundred the next
time?" The answer is that the tests have been standardized by actual trial
on large numbers of children, and so standardized that the average child of
a given age can just barely pass the tests of that age.
Intelligence is measured by Binet on a scale of mental age. The average
child of, let us say, eight years and six months is said to have a mental age
of eight years and six months; and any individual who does just as well as
this is said to have this mental age, no matter what his chronological age
may be. The average child of this age passes all the tests for eight years
and below, and three of the six tests for age nine; or passes an equivalent
number of tests from the total series. Usually there is some "scatter" in the
child's successes, as he fails in a test here and there below his mental age,
and succeeds here and there above his mental age, but the failures below
and the successes above balance each other in the average child, so that he
comes out with a mental age equal to his chronological age.
[Footnote: The Binet scale, it must be understood, is an instrument of
precision, not to be handled except by one who has been thoroughly trained
in its use. It looks so simple that any student is apt to say, "Why, I could
give those tests!" The point is that he couldn't--not until he knew the tests
practically by heart, not till he had standardized his manner of conducting
them to agree perfectly with the prescribed manner and till he knew how to
score the varying answers given by different children according to the
scoring system that goes with the tests, and not till, by experience in
handling children in the tests, he was able to secure the child's confidence
and get him to do his best, without, however, giving the child any
assistance beyond what is prescribed. Many superior persons have looked
down on the psychological examiner with his (or her) assortment of little
tests, and have said, "Certainly no special training is necessary to give
these tests. You simply want to find out whether the child can do these
stunts. I can find out as well as you." They miss the point altogether. The
question is not whether the child can do these stunts (with an undefined
amount of assistance), but whether he does them under carefully prescribed
conditions. The child is given two, three or four dozen chances to see how

CHAPTER XII

260

many of them he will accept; and the whole scale has been standardized by
try-out on many children of each age, and so adapted that when given
according to instructions, it will give a correct measure of the child's
mental age. But when given by superior persons in ignorance of its true
character, it gives results very wide of the mark. So much by way of
caution.]
{274}
If a child's mental age is the same as his chronological age, he is just
average, neither bright nor dull. If his mental age is much above his
chronological, he is bright; if much below, dull. His degree of brightness or
dullness can be measured by the number of years his mental age is above
or below his chronological age. He is, mentally, so many years advanced
or retarded.
Brightness or dullness can also be measured by the intelligence quotient,
which is employed so frequently that it is customarily abbreviated to "IQ".
This is the mental age divided by the chronological, and is usually
expressed in per cent. The IQ of the exactly average child, of any age, is 1,
or 100 per cent. The IQ of the bright child is above 100 and of the dull
child below 100. About sixty per cent. of all children have an IQ between
90 and 110, twenty per cent, are below 90 and twenty per cent, above 110.
The following table gives the distribution in somewhat greater detail:
IQ below 70, 1% IQ 70-79, 5% IQ 80-89, 14% IQ 90-99, 30% IQ 100-109,
30% IQ 110-119, 14% IQ 120-129, 5% IQ over 129, 1% --- 100
{275}
For convenience, those with IQ under 70 are sometimes labeled
"feeble-minded", and the others, in order, "borderline", "low normal",
"average" (from 90 to 110), "superior", "very superior", "exceedingly
superior"; but this is arbitrary and really unscientific, for what the facts
show is not a separation into classes, but a continuous gradation from one
extreme to the other. The lower extreme is near zero, and the upper extreme

CHAPTER XII

261

thus far found is about 180.
While the mental age tells an individual's intellectual level at a given time,
the IQ tells how fast he has progressed. An IQ of 125 means that he has
picked up knowledge and skill 25 per cent. faster than the average
individual--that he has progressed as far in four years as the average child
does in five, or as far in eight as the average does in ten, or as far in twelve
as the average does in fifteen. The IQ usually remains fairly constant as the
child grows older, and thus represents his rate of mental growth. It
furnishes a pretty good measure of the individual's intelligence.
Performance Tests
Since, however, the Binet tests depend greatly on the use of language, they
are not fair to the deaf child, nor to the child with a speech defect, nor to
the foreign child. Also, some persons who are clumsy in managing the
rather abstract ideas dealt with in the Binet tests show up better in
managing concrete objects. For all such cases, performance tests are
useful. Language plays little part in a performance test, and concrete
objects are used. The "form board" is a good example. Blocks of various
simple shapes are to be fitted into corresponding holes in a board; the time
of performance is measured, and the errors (consisting in trying to put a
block into a differently shaped hole) are also counted. To the normal adult,
this task seems too simple {276} to serve as a test for intelligence, but the
young child finds it difficult, and the mentally deficient adult goes at it in
the same haphazard way as a young child, trying to force the square block
into the round hole. He does not pin himself down to the one essential
thing, which is to match blocks and holes according to shape.
Another good performance test is the "picture completion". A picture is
placed before the child, out of which several square holes have been cut.
These cut-out pieces are mounted on little blocks, and there are other
similar blocks with more or less irrelevant objects pictured on them. The
child must select from the whole collection of little blocks the one that
belongs in each hole in the picture. The better his understanding of the
picture, the better his selection.

CHAPTER XII

262

Group Testing
The tests so far described, because they have to be given to each subject
individually, require a great deal of time from the trained examiner, and
tests are also needed which can be given to a whole group of people at
once. For persons who can read printed directions, a group test can easily
be conducted, though much preliminary labor is necessary in selecting and
standardizing the questions used. Group testing of foreigners, illiterates,
and young children is more difficult, but has been accomplished, the
directions being conveyed orally or by means of pantomime.
The first extensive use of group intelligence tests was made in the American
Army during the Great War. A committee of the American Psychological
Association prepared and standardized the tests, and persuaded the Army
authorities to let them try them out in the camps. So successful were these
tests--when supplemented, in doubtful cases, by individual tests--that they
were adopted in the receiving {277} camps; and they proved very useful
both in detecting those individuals whose intelligence was too low to enable
them to learn the duties of a soldier, and those who, from high intelligence,
could profitably be trained for officers.
The "Alpha test", used on recruits who could read, consisted of eight pages
of questions, each page presenting a different type of problem for solution.
On the first page were rows of circles, squares, etc., to which certain things
were to be done in accordance with spoken commands. The subject had to
attend carefully to what he was told to do, since he was given each
command only once, and some of the commands called for rather
complicated reactions. The second page consisted of arithmetical
problems, ranging from very simple at the top of the page to more difficult
ones below, though none of them went into the more technical parts of
arithmetic. One page tested the subject's information on matters of common
knowledge; and another called for the selection of the best of three reasons
offered for a given fact, as, for example, "Why is copper used for electric
wires? Because--it is mined in Montana--it is a good conductor--it is the
cheapest metal." Another page presented disarranged sentences (as, "wet
rain always is", or "school horses all to go"), to be put straight mentally,

CHAPTER XII

263

and indicated on the paper as true or false.
Many group tests are now in use, and among them some performance tests.
In the latter, pictures are often employed; sometimes the subject has to
complete the picture by drawing in a missing part, sometimes he has to
cancel from the picture a part that is superfluous. He may have to draw a
pencil line indicating the shortest path through a maze, or he may have to
continue a series of marks which starts off according to a definite plan. The
problems set him under each class range from very easy to fairly difficult.
{278}
Some Results of the Intelligence Tests
The principal fact discovered by use of standardized intelligence tests is
that the tests serve very well the purpose for which they were intended. In
expert hands they actually give a fairly reliable measure of the individual's
intelligence. They have located the trouble in the case of many a backward
school child, whose intelligence was too low to enable him to derive much
benefit from the regular school curriculum. His schooling needed to be
adjusted to his intelligence so as to prepare him to do what he was
constitutionally able to do.
On the other hand, it sometimes happens that a child who is mischievous
and inattentive in school, and whose school work is rather poor, tests high
in intelligence, the trouble with him being that the work set him is below his
mental level and therefore unstimulating. Such children do better when
given more advanced work. The intelligence tests are proving of great
service in detecting boys and girls of superior intelligence who have been
dragging along, forming lazy habits of work, and not preparing for the kind
of service that their intelligence should enable them to give.
Some results obtained by the "Alpha test" are given in the following table,
and in the diagram which restates the facts of the table in graphic form.
The Alpha test included 212 questions in all, and a correct answer to any
question netted the subject one point. The maximum score was thus 212

CHAPTER XII

264

points, a mark which could only be obtained by a combination of perfect
accuracy and very rapid work (since only a limited time was allowed for
each page of the test). Very seldom does even a very bright individual score
over 200 points. The table shows the approximate per cent, of individuals
scoring between certain limits; thus, {279} of men drafted into the Army,
approximately 8 per cent. scored below 15 points, 12 per cent. scored from
16 to 29 points, etc. Of college freshmen, practically none score below 76
points, 1 per cent. score from 76 to 89 points, etc.
Per cent. of Per cent. of drafted men college freshmen making these making
these Scores Scores Scores 0-14 points 3 0
15-29 12 0
30-44 15 0
45-59 16 0
60-74 13 0
75-89 11 1
90-104 9 4
105-119 7 8
120-134 6 14
135-149 4 23
150-164 2 24
165-179 1.3 13
180-194 0.5 7

CHAPTER XII

265

195-212 0.2 1 ----- --- 100 100
The "drafted men", consisting of men between the ages of twenty-one and
thirty-one, fairly represent the adult male white population of the country,
except in two respects. Many able young men were not included in the
draft, having previously volunteered for officers' training camps or for
special services. Had they been included, the percentages making the
higher scores would have gone up slightly. On the other hand, many men of
very low intelligence never reached the receiving camps at all, being
inmates of institutions for the feebleminded or excluded from the draft
because of known mental deficiency; and, of those who reached {280} the
camps, many, being illiterate, did not take the Alpha test. It is for this
reason that the graph for drafted men stops rather short at the lower end;
to picture fairly the distribution of intelligence, it should taper off to the
left, beyond the zero of the Alpha test.
[Illustration: Fig. 46.--Distribution of the scores of drafted men, and also
of college freshmen, in the Alpha test. The height of the broken line above
the base line is made proportional to the percent of the group that made the
score indicated just below along the base line. (Figure text: army
median--65, freshman median--150)]
College freshmen evidently are, as they should be, a highly selected group
in regard to intelligence. The results obtained at different colleges differ
somewhat, and the figures here given represent an approximate average of
results obtained at several colleges of high standing. The median {281}
score for freshmen has varied, at different colleges, from 140 to 160 points.
[Footnote: The "median" is a statistical measure very similar to the
average; but, while the average score would be obtained by adding
together the scores of all the individuals and dividing the sum by the
number of individuals tested, the median is obtained by arranging all the
individual scores in order, from the lowest to the highest, and then counting
off from either end till the middle individual is reached; his score is the
median. (If the number of individuals tested is an even number, there are
two middle individuals, and the point midway between them is taken as the

CHAPTER XII

266

median.) Just as many individuals are below the median as above it. The
median is often preferred to the average in psychological work, not only
because it is more easily computed, but because it is less affected by the
eccentric or unusual performances of a few individuals, and therefore more
fairly represents the whole population.]
It will be noticed in the graph that none of the freshmen score as low as the
median of the drafted men. All of the freshmen, in fact, lie well above the
median for the general population. A freshman who scores below 100
points finds it very difficult to keep up in his college work. Sometimes, it
must be said, a freshman who scores not much over 100 in the test does
very well in his studies, and sometimes one who scores very high in the test
has to be dropped for poor scholarship, but this last is probably due to
distracting interests.
No such sampling of the adult female population has ever been made as
was afforded by the draft, and we are not in a position to compare the
average adult man and woman in regard to intelligence. Boys and girls
under twelve average almost the same, year by year, according to the Binet
tests. In various other tests, calling for quick, accurate work, girls have on
the average slightly surpassed boys of the same age, but this may result
from the fact that girls mature earlier than boys; they reach adult height
earlier, and perhaps also adult intelligence. College women, in the Alpha
test, score on the average a few points below college men, but this, on the
other hand, may be due to the fact that the Alpha test, being prepared for
men, includes a few questions that lie rather outside the usual range of
women's interests. On the whole, tests have given very little evidence of any
significant difference between the general run of intelligence in the two
sexes.
Limitations of the Intelligence Tests
Tests of the Binet or Alpha variety evidently do not cover the whole range
of intelligent behavior. They do not test {282} the ability to manage
carpenter's or plumber's tools or other concrete things, they do not test the
ability to manage people, and they do not reach high enough to test the

CHAPTER XII

267

ability to solve really big problems.
Regarding the ability to manage concrete things, we have already
mentioned the performance tests, which provide a necessary supplement to
the tests that deal in ideas expressed in words. It is an interesting fact that
some men whose mental age is below ten, according to the Binet tests,
nevertheless have steady jobs, earn good wages, and get on all right in a
simple environment. There are many others, with a mental age of ten or
eleven, who cannot master the school work of the upper grades, and yet
become skilled workmen or even real artists. Now, it takes mentality to
perform skilled or artistic work; only, the mentality is different from that
demanded by what we call "intellectual work".
Managing people requires tact and leadership, which are obviously mental
traits, though not easily tested. It is seldom that a real leader of men scores
anything but high in the intelligence tests, but it more often happens that an
individual who scores very high in the tests has little power of leadership.
In part this is a matter of physique, or of temperament, rather than of
intelligence, but in part it is a matter of understanding people and seeing
how they can be influenced and led.
Though the intelligence tests deal with "ideas", they do not, as so far
devised, reach up to the great ideas nor make much demand on the
superior powers of the great thinker. If we could assemble a group of the
world's great authors, scientists and inventors, and put them through the
Alpha test, it is probable that they would all score high, but not higher than
the upper ten per cent, of college freshmen. Had their IQ's been determined
when they were children, {283} probably all would have measured over
180 and some as high as 200, but the tests would not have distinguished
these great geniuses from the gifted child who is simply one of a hundred or
one of a thousand.
The Correlation of Abilities
There is no opposition between "general intelligence", as measured by the
tests, and the abilities to deal with concrete things, with people, or with big

CHAPTER XII

268

ideas. Rather, there is a considerable degree of correspondence. The
individual who scores high in the intelligence tests is likely, but not certain,
to surpass in these respects the individual who scores low in the tests. In
technical language, there is a "positive correlation" between general
intelligence and ability to deal with concrete things, people and big ideas,
but the correlation is not perfect.
Correlation is a statistical measure of the degree of correspondence.
Suppose, for an example, we wish to find out how closely people's weights
correspond to their heights. Stand fifty young men up in single file in order
of height, the tallest in front, the shortest behind. Then weigh each man,
and shift them into the order of their weights. If no shifting whatever were
needed, the correlation between height and weight would be perfect.
Suppose the impossible, that the shortest man was the heaviest, the tallest
the lightest, and that the whole order needed to be exactly reversed; then
we should say that the correlation was perfectly inverse or negative.
Suppose the shift from height order to weight order mixed the men
indiscriminately, so that you could not tell anything from a man's position
in the height order as to what his position would be in the weight order;
then we should have "zero correlation". The actual result, however, would
be that, while the height order would be {284} somewhat disturbed in
shifting to the weight order, it would not be entirely lost, much less
reversed. That is, the correlation between height and weight is positive but
not perfect.
Statistics furnishes a number of formulae for measuring correlations,
formulae which agree in this, that perfect positive correlation is indicated
by the number + 1, perfect negative correlation by the number - 1, and zero
correlation by 0. A correlation of +.8 indicates close positive
correspondence, though not perfect correspondence; a correlation of +.3
means a rather low, but still positive, correspondence; a correlation of -.6
means a moderate tendency towards inverse relationship.
The correlation between two good intelligence tests, such as the Binet and
the Alpha, comes out at about +.8, which means that if a fair sample of the
general population, ranging from low to high intelligence, is given both

CHAPTER XII

269

tests, the order of the individuals as measured by the one test will agree
pretty closely with the order obtained with the other test. The correlation
between a general intelligence test and a test for mechanical ability is
considerably lower but still positive, coming to about +.4. Few if any real
negative correlations are found between different abilities, but low positive
or approximately zero correlations are frequent between different, rather
special abilities.
In other words, there is no evidence of any antagonism between different
sorts of ability, but there is plenty of evidence that different special abilities
may have little or nothing in common.
[Footnote] Possibly some readers would like to see a sample of the
statistical formulae by which correlation is measured. Here is one of the
simplest. Number the individuals tested in their order as given by the first
test, and again in their order as given by the second test, and find the
difference between each individual's two rank numbers. If an individual
who ranks no. 5 in one test ranks no. 12 in the other, the difference in his
rank numbers is 7. Designate this difference by the letter D. and the whole
number of individuals tested by n. Square each D, and get the sum of all the
squares, calling this sum "sum of D2[squared]". Then the correlation is
given by the formula,
1 - ( ( 6 X sum of D[squared] ) / (n x ( n[squared] - 1)) )
As an example in the use of this formula, take the following:
Individuals Rank of each Rank of each D D[squared] tested individual in
individual in first test second test
Albert 3 5 2 4
George 7 6 1 1
Henry 5 3 2 4

CHAPTER XII

270

James 2 1 1 1
Stephen 1 4 3 9
Thomas 4 2 2 4
William 6 7 1 1
n=7
sum of D[squared] = 24
n[squared] - 1 = 48
6 x sum of D[squared] = 144
6 x sum of D[squared] / n ( n[squared] - 1 )
= 1 - 144/(7 x 48)
= +.57
In order to get a full and true measure of the correlation between two tests,
the following precautions are necessary:
(1) The same individuals must be given both tests.
(2) The number of individuals tested must be as great as 15 or 20,
preferably more.
(3) The individuals should be a fair sample of the population in regard to
the abilities tested; they should not be so selected as to represent only a
small part of the total range of ability.
(4) The tests should be thorough enough to determine each individual's
rank in each test, with a high degree of certainty. Sloppy testing gives a

CHAPTER XII

271

correlation nearer zero than it should be, because it "pies" the true orders
to some extent. [End footnote]
{285}
General Factors in Intelligence
If now we try to analyze intelligence and see in what it consists, we can best
proceed by reviewing the intelligence tests, and asking how it is that an
individual succeeds in them. Passing the tests is a very specific instance of
{286} intelligent behavior, and an analysis of the content of the tests should
throw some light on the nature of intelligence.
The first thing that strikes the eye in looking over the tests is that they call
for so many different reactions. They call on you to name objects, to copy a
square, to tell whether a given statement is true or false, to tell wherein two
objects are alike or different. The first impression, then, is that intelligence
consists simply in doing a miscellaneous lot of things and doing them right.
But can we not state in more general terms how the individual who scores
high in the tests differs from one who scores low? If you survey the test
questions carefully, you begin to see that the person who passes them must
possess certain general characteristics, and that lack of these
characteristics will lead to a low score. We may speak of these
characteristics as "general factors" in intelligent behavior.
First, the tests evidently require the use of past experience. They call, not
for instinctive reactions, but for previously learned reactions. Though the
Binet tests attempt to steer clear of specific school knowledge, they do
depend upon knowledge and skill picked up by the child in the course of his
ordinary experience. They depend on the ability to learn and remember.
One general factor in intelligence is therefore retentiveness.
But the tests do not usually call for simple memory of something previously
learned. Rather, what has been previously learned must be applied, in the
test, to a more or less novel problem. The subject is asked to do something

CHAPTER XII

272

a little different from anything he has previously done, but similar enough
so that he can make use of what he has learned. He has to see the point of
the problem now set him, and to adapt what he has learned to this novel
situation. Perhaps "seeing the point" and "adapting oneself to {287} a
novel situation" are to be held apart as two separate general factors in
intelligence, but on the whole it seems possible to include both under the
general head, responsiveness to relationships, and to set up this
characteristic as a second general factor in intelligence.
In the form board and picture completion tests, this responsiveness to
relationships comes out clearly. To succeed in the form board, the subject
must respond to the likeness of shape between the blocks and their
corresponding holes. In picture completion, he must see what addition
stands in the most significant relationship to the total picture situation. In
telling how certain things are alike or different, he obviously responds to
relationships; and so also in distinguishing between good and poor reasons
for a certain fact. This element of response to relationships occurs again
and again in the tests, though perhaps not in the simplest, such as naming
familiar objects.
Besides these two intellectual factors in intelligent behavior, there are
certain moral or impulsive factors. One is persistence, which is probably
the same thing as the mastery or self-assertive instinct. The individual who
gives up easily, or succumbs easily to distraction or timidity, is at a
disadvantage in the tests or in any situation calling for intelligent behavior.
But, as we said before, in discussing the instincts, excessive stubbornness is
a handicap in meeting a novel situation, which often cannot be mastered by
the first mode of response that one makes to it. Some giving up, some
submissiveness in detail along with persistence in the main effort, is
needed. The too stubborn young child may waste a lot of time trying with
all his might to force the square block into the round hole, and so make a
poorer score in the test, than if he had given up his first line of attack and
tried something else. Intelligent behavior must perforce {288} often have
something of the character of "trial and error", and trial and error requires
both persistence in the main enterprise and a giving up here in order to try

CHAPTER XII

273

again there.
Finally, the instinct of curiosity or exploration is evidently a factor in
intelligence. The individual who is stimulated by novel things to explore
and manipulate them will amass knowledge and skill that can later be
utilized in the tests, or in intelligent behavior generally.
Special Aptitudes
We distinguish between the general factors in intelligence, just mentioned,
and special aptitudes for dealing with colors, forms, numbers, weights etc.
A special aptitude is a specific responsiveness to a certain kind of stimulus
or object. The special aptitudes are factors in intelligent behavior--as we
may judge from the content of the intelligence tests--only, the tests are so
contrived as not to depend too much on any one or any few of the special
aptitudes. Arithmetical problems alone would not make a fair test for
intelligence, since they would lay undue stress on the special aptitude for
number; but it is fair enough to include them along with color naming,
weight judging, form copying, and word remembering, and so to give many
special aptitudes a chance to figure in the final score.
There are tests in existence for some special aptitudes: tests for color sense
and color matching, for musical ability, for ability in drawing, etc.; but as
yet we have no satisfactory list of the special aptitudes. They come to light
when we compare one individual with another, or one species with another.
Thus, while man is far superior to the dog in dealing with colors, the dog is
superior in dealing with odors. Man has more aptitude for form, but some
animals are fully his equal in sense of location and ability to find {289}
their way. Man is far superior in dealing with numbers and also with tools
and mechanical things. He is superior in speech, in sense of rhythm, in
sense of humor, in sense of pathos. Individual human beings also differ
markedly in each of these respects. They differ in these special directions as
well as in the "general factors" of intelligence.
Heredity of Intelligence and of Special Aptitudes

CHAPTER XII

274

Let us now return to the question raised at the very outset of the chapter,
whether or not intelligence is a native trait. We then said that the differing
intelligence of different species of animals must be laid to their native
constitutions, but left the question open whether the differing intelligence of
human individuals was a matter of heredity or of environment.
Intelligence is of course quite different from instinct, in that it does not
consist in ready-made native reactions. The intelligence of an individual at
any age depends on what he has learned previously. But the factors in
intelligent behavior--retentiveness, responsiveness to relationships,
persistence, etc.--may very well be native traits.
But what evidence is there that the individual's degree of intelligence is a
native characteristic, like his height or color of hair? The evidence is pretty
convincing to most psychologists.
First, we have the fact that an individual's degree of intelligence is an
inherent characteristic, in the sense that it remains with him from
childhood to old age. Bright child, bright adult; dull child, dull adult. That
is the rule, and the exceptions are not numerous enough to shake it. Many a
dull child of well-to-do parents, in spite of great pains taken with his
education, is unable to escape from his inherent limitations. The
intelligence quotient remains fairly {290} constant for the same child as he
grows up, and stands for an inherent characteristic of the individual,
namely, the rate at which he acquires knowledge and skill. Give two
children the same environment, physical and social, and you will see one
child progress faster than the other. Thus, among children who grow up in
the same community, playing together and going to the same schools, the
more rapid mental advance of some than of others is due to differences in
native constitution, and the IQ gives a measure of the native constitution in
this respect. There are exceptions, to be sure, depending on physical
handicaps such as deafness or disease, or on very bad treatment at home,
but in general the IQ can be accepted as representing a fact of native
constitution.

CHAPTER XII

275

Another line of evidence for the importance of native constitution in
determining degrees of intelligence comes from the study of mental
resemblance among members of the same family. Brothers or sisters test
more alike than children taken at random from a community, and twins test
more alike than ordinary brothers and sisters. Now, as the physical
resemblance of brothers or sisters, and specially of twins, is accepted as
due to native constitution, we must logically draw the same conclusion
from their mental resemblance.
The way feeble-mindedness runs in families is a case in point. Though, in
exceptional instances, mental defect arises from brain injury at the time of
birth, or from disease (such as cerebrospinal meningitis) during early
childhood, in general it cannot be traced to such accidents, but is inherent
in the individual. Usually mental defect or some similar condition can be
found elsewhere in the family of the mentally defective child; it is in the
family stock. When both parents are of normal intelligence and come from
families with no mental abnormality in any ancestral line, it is practically
unknown that they should have a feeble-minded {291} child; but if mental
deficiency has occurred in some of the ancestral lines, an occasional
feeble-minded child may be born even of parents who are themselves both
normal. If one parent is normal and the other feeble-minded, some of the
children are likely to be normal and others feeble-minded; but if both
parents are feeble-minded, it is said that all the children are sure to be
feeble-minded or at least dull.
These facts regarding the occurrence of feeble-mindedness cannot be
accounted for by environmental influences, especially the fact that some
children of the same family may be definitely feeble-minded and others
normal. We must remember that children of the same parents need not have
precisely similar native constitutions; they are not always alike in physical
traits such as hair color or eye color that are certainly determined by
native constitution.
The special aptitudes also run in families. You find musical families where
most of the children take readily to music, and other families where the
children respond scarcely at all to music, though their general intelligence

CHAPTER XII

276

is good enough. You find a special liking and gift for mathematics cropping
out here and there in different generations of the same family. No less
significant is the fact that children of the same family show ineradicable
differences from one another in such abilities. In one family were two
brothers, the older of whom showed much musical ability and came early to
be an organist and composer of church music; while the younger,
possessing considerable ability in scholarship and literature, was never
able to learn to sing or tell one tune from another. Being a clergyman, he
desired very much to be able to lead in singing, but he simply could not
learn. Such obstinate differences, persisting in spite of the same home
environment, must depend on native constitution.
Native constitution determines mental ability in two respects. It fixes
certain limits which the individual cannot {292} pass, no matter how good
his environment, and no matter how hard he trains himself; and, on the
positive side, it makes the individual responsive to certain stimuli, and so
gives him a start towards the development of intelligence and of special
aptitudes.
Intelligence and the Brain
There is certainly some connection between the brain and intelligent
behavior. While the spinal cord and brain stem vary according to the size
of the body, and the cerebellum with the motility of the species of animal,
the size of the cerebrum varies more or less closely with the intelligence of
the species. It does vary also with bodily size, as illustrated by the whale
and elephant, which have the largest cerebrum of all animals, including
man. But the monkey, which shows more intelligence than most animals,
has also a very large cerebrum for his size of body; and the chimpanzee
and gorilla, considerably surpassing the ordinary monkeys in intelligence,
have also a much larger cerebrum. The cerebrum of man, in proportion to
the size of his body, far surpasses that of the chimpanzee or gorilla.
The cerebrum varies considerably in size from one human individual to
another. In some adults it is twice as large as in others, and the question
arises whether greater intelligence goes with a larger brain. Now, it

CHAPTER XII

277

appears that an extremely small cerebrum spells idiocy; not all idiots have
small brains, but all men with extremely small brains are idiots. The brain
weight of quite a number of highly gifted men has been measured in
post-mortem examination, and many of these gifted men have had a very
large cerebrum. On the whole, the gifted individual seems to have a large
brain, but there are exceptions, and the relationship between brain size and
intelligence cannot be very close. Other factors must enter, one factor
being undoubtedly the fineness {293} of the internal structure of the cortex.
Brain function depends on dendrites and end-brushes, forming synapses in
the cortex, and such minute structures make little impression on the total
brain weight.
While intelligence is related to the cerebrum as a whole, rather than to any
particular "intelligence center", there is some likelihood that the special
aptitudes are related to special parts of the cortex, though it must be
admitted that few aptitudes have as yet been localized. The pretended
localizations of phrenology are all wrong. But we do know that each sense
has its special cortical area, and that adjacent to these sensory areas are
portions of the cortex intimately concerned in response to different classes
of complex stimuli. Near the auditory center the cortex is concerned in
recognizing spoken words, and in following music; near the visual center it
is concerned in recognizing printed words, in recognizing seen objects, in
finding one's way by the sense of sight, etc. These special aptitudes thus
have a fairly definite cortical localization, and possibly others have also.
Examined microscopically, the cortex shows differences of structure in
different parts, and to the structural differences probably correspond
differences of function. Now it is practically impossible that such a function
as attention or memory should have any localized cortical center, for these
are general functions. The instincts are specialized enough to have local
centers, but none have so far been localized. What has been localized is of
the nature of special aptitudes.
{294}
EXERCISES

CHAPTER XII

278

1. Outline the chapter.
2. Pick out the true statements from the following list:
(a) Man is the most intelligent of animals.
(b) Intelligence depends on the development of the cerebellum.
(c) It has not been found possible to use any single performance as a
reliable index of intelligence.
(d) Children of different mental ages may have the same IQ.
(e) A child with a mental age of 10 years can do all the tests for 10 years
and below, but none of those for the higher ages.
(f) The intelligence tests depend wholly on accurate response and not at all
on speed of reaction.
(g) If intelligence tests depended upon previous training, they could not be
measures of native intelligence.
(h) High correlation between the test scores of brothers and sisters is a fact
that tends to indicate the importance of heredity in determining
intelligence.
(i) The "general factors" in intelligence are the same as the instincts.
(j) Feeble-minded individuals include all those who are below the average
intelligence.
3. It is found that eminent men very often have eminent brothers, uncles and
cousins. How would this fact be explained?
4. It is also found that the wives of eminent men often have eminent
relatives. How would this fact be explained?

CHAPTER XII

279

5. How could it happen that a boy of 9, in the third school grade, with an
IQ of 140, should be mischievous and inattentive? What should be done
with him?
6. If a boy of 12, by industrious work, does pretty well in the fourth grade,
why should we not accept the teacher's estimate of him as a "fairly bright
boy"?
7. How might the brain of an idiot be underdeveloped, aside from the
matter of the number of nerve cells in the cortex?
8. Can it be that high intelligence is a disadvantage in any form of
industrial work, and, if so, how?
9. Show how "general intelligence" and "special aptitudes" may work
together to give success in some special line of work.
{295}
REFERENCES
For the Binet tests and some results obtained by their use, see Louis M.
Terman, The Measurement of Intelligence, 1916.
The group tests used in the American Army during the War are described in
detail In Vol. 15 of the Memoirs of the National Academy of Sciences,
1921, edited by Robert M. Yerkes. This large book describes the work of
preparing and standardizing the tests, and also gives some results bearing
on the Intelligence of different sections of the population. Some of the
interesting results appear on pp. 507, 522, 528, 537, 693, 697, 705, 732,
743, 799, 815, 819, 829, 856 and 869.
For briefer treatments of the subject, see Walter S. Hunter's General
Psychology, 1919, pp. 36-58, and W. B. Pillsbury's Essentials of
Psychology, 2nd edition, 1920, pp. 388-407.

CHAPTER XII

280

For the poor results obtained in attempting to judge intelligence from
photographs, see an illustrated article by Rudolph Pintner, in the
Psychological Review for 1918, Vol. 25, pp. 286-296.
For a study of one of the special aptitudes, see C. E. Seashore's Psychology
of Musical Talent, 1919.
For a comprehensive survey of test methods and results, see the two
volumes of Whipple's Manual of Mental and Physical Tests, 2nd edition,
1914, 1915.
{296}

CHAPTER XIII

281

CHAPTER XIII
LEARNING AND HABIT FORMATION
THE DEPENDENCE OF ACQUIRED REACTIONS UPON INSTINCT
AND REFLEX ACTION, AND THE MODIFICATION OF NATIVE
REACTIONS BY EXPERIENCE AND TRAINING.
Already, in considering intelligence, we have partially rounded the corner
from native to acquired traits, and now, fairly around the corner, we see
ahead of us a long straight stretch of road. For there is much to say
regarding acquired traits and regarding the process of acquisition. All
knowledge is acquired, the whole stock of ideas, as well as motor skill, and
there are acquired motives in addition to the native motive forces that we
called instincts, and acquired likes and dislikes in addition to those that are
native; so that, all in all, there are thousands on thousands of acquired
reactions, and the daily life of the adult is made up of these much more
than of strictly native reactions.
It will take us several chapters to explore this new territory that now lies
before us, a chapter on acquiring motor habits and skill, a chapter on
memory, a chapter on acquired mental reactions, and a chapter devoted to
the general laws that hold good in this whole field. Our general plan is to
proceed from the simple to the complex, generalizing to some extent as we
go, but leaving the big generalizations to the close of the discussion, where
we shall see whether the whole process of acquiring reactions of all sorts
cannot be summed up in a few general laws of acquisition, or "laws of
association" as they are traditionally called. On reaching that {297} goal,
the reader may well come back, with the general laws in mind, and see how
well they fit in detail all the instances of acquired responses that we are
about to describe. We might have begun by stating the general laws, but on
the whole it will be better to proceed "inductively", beginning with the
observed facts and working up to the general laws.
Acquired Reactions Are Modified Native Reactions

CHAPTER XIII

282

Though we have "turned a corner" in passing from native traits to
acquired, it would be a mistake to suppose we had left what is native
altogether behind. It would be a mistake to suppose that the individual
outgrew and left behind his native reactions and acquired an entirely new
outfit. The reactions that he acquires--or learns, as we speak of acquisition
in the sphere of reactions--develop out of his native reactions. Consider
this: how is the individual ever going to learn a reaction? Only by reacting.
Without native reactions, he would be entirely inactive at the outset, and
would never make a start towards any acquisition. His acquired reactions,
then, are his native reactions modified by use.
The vast number of motor acts that the individual acquires are based upon
the reflexes. They are modified reflexes. The simplest kind of modification
is the mere strengthening of an act by exercise. By his reflex breathing and
crying, the new-born baby exercises his lungs and breathing muscles and
the nerve centers that control them, with the result that his breathing
becomes more vigorous, his crying louder. The strengthening of a reaction
through exercise is a fundamental fact.
But we should scarcely speak of "learning" if the only modification
consisted in the simple strengthening of native reactions, and at first
thought it is difficult to see how the {298} exercise of any reaction could
modify it in any other respect. But many reflexes are not perfectly fixed and
invariable, but allow of some free play, and then exercise may fix or
stabilize them, as is well illustrated in the case of the pecking response of
the newly hatched chick. If grains are strewn before a chick one day old, it
instinctively strikes at them, seizes them in its bill and swallows them; but,
its aim being poor and uncertain, it actually gets, at first, only a fifth of the
grains pecked at; by exercise it improves so as to get over half on the next
day, over three-fourths after another day or two, and about 86 percent
(which seems to be its limit) after about ten days of practice. Exercise has
here modified a native reaction in the way of making it more definite and
precise, by strengthening the accurate movement as against all the
variations of the pecking movement that were made at the start. Where a
native response is variable, exercise tends towards constancy, and so
towards the fixation of definite habits.

CHAPTER XIII

283

A reflex may come to be attached to a new stimulus, that does not naturally
arouse it. A child who has accidentally been pricked with a pin, and of
course made the flexion reflex in response to this natural stimulus, will
make this same reaction to the sight of a pin approaching his skin. The seen
pin is a substitute stimulus that calls out the same response as the pin prick.
This type of modification gives a measure of control over the reflexes; for
when we pull the hand back voluntarily, or wink at will, or breathe deeply
at will, we are executing these movements without the natural stimulus
being present.
Voluntary control includes also the ability to omit a response even if the
natural stimulus is present. Holding the breath, keeping the eyes wide open
in spite of the tendency to wink, not swallowing though the mouth is full of
saliva, holding the hand steady when it is being pricked, and many {299}
similar instances of control over reflexes are cases of detachment of a
native reaction from its natural stimulus. Not "starting" at a sudden sound
to which we have grown used and not turning the eyes to look at a very
familiar object, are other instances of this detachment.
The substitute response is another modification to be placed alongside of
the substitute stimulus. Here a natural stimulus calls out a motor response
different from its natural response. The muttered imprecation of the adult
takes the place of the child's scream of pain. The loose holding of the pen
between the thumb and the first two fingers takes the place of the child's
full-fisted grasp.
Finally, an important type of modification consists in the combination of
reflex movements into larger coördinations. One hand grasps an object,
while the other hand pulls, pushes or strikes it. Or, both hands grasp the
object but in different ways, as in handling an ax or shovel. These cases
illustrate simultaneous coördination, and there is also a serial
coördination, in which a number of simple instinctive movements become
hitched together in a fixed order. Examples of this are seen in dancing,
writing a word, and, most notably, in speaking a word or familiar phrase.

CHAPTER XIII

284

In these ways, by strengthening, fixing and combining movements, and by
new attachments and detachments between stimulus and response, the
instinctive motor activity of the baby passes over into the skilled and
habitual movement of the adult.
Acquired Tendencies
In the sphere of impulse and emotion the same kinds of modification occur.
Detachment of an impulse or emotion from its natural stimulus is very
much in evidence, since {300} what frightens or angers or amuses the little
child may have no such power with the adult. One little boy of two could be
thrown into gales of laughter by letting a spoon drop with a bang to the
floor; and you could repeat this a dozen times in quick succession and get
the response every time. But this stimulus no longer worked when he had
advanced to the age of four.
The emotions get attached to substitute stimuli. Amusement can be aroused
in an older child by situations that were not at all amusing to the baby.
New objects arouse fear, anger, rivalry or curiosity. The emotions of the
adult--with the exception of sex attraction, which is usually very weak in
the child--are the emotions of the child, but they are aroused by different
stimuli.
Not only so, but the emotions express themselves differently in the child and
the adult. Angry behavior is one thing in the child, and another thing in the
adult, so far as concerns external motor action. The child kicks and
screams, where the adult strikes with his fist, or vituperates, or plots
revenge. The internal bodily changes in emotion are little modified as the
individual grows up--except that different stimuli arouse them--but the
overt behavior is greatly modified; instead of the native reactions we find
substitute reactions.
A little girl of three years, while out walking in the woods with her family,
was piqued by some correction from her mother, but, instead of showing
the instinctive signs of temper, she picked up a red autumn leaf and offered
it to her mother, with the words, very sweetly spoken, "Isn't that a pretty

CHAPTER XIII

285

leaf?" "Yes," said her mother, acquiescently. "Wouldn't you like to have
that leaf?" "Yes, indeed." "I'll throw it away!" (in a savage tone of voice,
and with a gesture throwing the leaf away). Here we have an early form of
substitute reaction, and can glimpse how such {301} reactions become
attached to the emotions. The natural outlet for the child's anger was
blocked, probably because previous outbursts of rage had not had
satisfactory consequences, so that the anger was dammed up, or "bottled
up", for the instant, till the child found some act that would give it vent.
Now supposing that the substitute reaction gave satisfaction to the child,
we can well imagine that it would become attached to the angry state and
be used again in a similar case. Thus, without outgrowing the emotions, we
may outgrow emotional behavior that is socially unacceptable.
Emotions are also combined, much as reflexes are combined. The same
object which on one occasion arouses in us one emotion may arouse
another emotion on another occasion, so that eventually, whenever we see
that object, we respond by a blend of the two emotions. Your chief may
terrify you on some occasions, at other times amaze you by his masterly
grasp on affairs, and again win your affection by his care for your own
welfare; so that your attitude toward "the boss" comes to be a blend of fear,
admiration and gratitude. Religion and patriotism furnish good examples
of compound emotions.
Well, then, adult behavior compared with the instinctive behavior of the
little child shows these several types of modification. This is interesting, but
it is not all we wish to know. We want to know how the modification comes
about; that is, we want to get an insight into the process of learning.
Scientifically, this is one of the most fascinating topics in psychology--how
we learn, how we are molded or modified by experience--and practically, it
is just as important, since if we wish to educate, train, mold, improve
ourselves or others, it is the process of modification that we must control;
and to control it we must understand it.
To understand it we must watch the process itself; and {302} therefore we
turn to studies that trace the course of events in human and animal
learning.

CHAPTER XIII

286

Animal Learning
Animals do learn, all the vertebrates, at least, and many of the
invertebrates. They often learn more slowly than men, but this is an
advantage for our present purpose, since it makes the learning process
easier to follow. Mere anecdotes of intelligent behavior in animals are of
little value, but experimental studies, in which the animal's progress is
followed, step by step, from the time when he is confronted with a perfectly
novel situation till he has mastered the trick, have now been made in great
numbers, and a few typical experiments will serve as a good introduction to
the whole subject of learning.
The negative adaptation experiment.
Apply a harmless and meaningless stimulus time after time; at first the
animal makes some instinctive exploring or defensive reaction; but with
continued repetition of the stimulus, he ceases after a while to respond. The
instinctive reaction has been detached from one of its natural stimuli.
Even in unicellular animals, negative adaptation can be observed, but in
them is only temporary, like the "sensory adaptation" described in the
chapter on sensation. Stop the stimulus and the original responsiveness
returns after a short time. Nothing has been learned, for what is learned
remains after an interval of rest.
In higher animals, permanent adaptation is common, as illustrated by a
famous experiment on a spider. While the spider was in its web, a tuning
fork was sounded, and the spider made the defensive reaction of dropping
to the ground. It climbed back to its web, the fork was sounded again, the
spider dropped again; but after several {303} repetitions in quick
succession, the spider ceased to respond. Next day, to be sure, it responded
as at first; but after the same performance had been repeated on several
days, it ceased permanently to respond to this stimulus.
Negative adaptation is common in domestic animals, as well as in men. The
horse "gets used" to the harness, and the dog to the presence of a cat in the

CHAPTER XIII

287

house. Man grows accustomed to his surroundings, and to numerous
unimportant sights and sounds.
The conditioned reflex experiment.
Put into a dog's mouth a tasting substance that arouses the flow of saliva,
and at the same instant ring a bell; and repeat this combination of stimuli
many times. Then ring the bell alone, and the saliva flows in response to
the bell. The bell is a substitute stimulus, which has become attached to the
salivary response by dint of having been often given along with the natural
stimulus that arouses this response. At first thought, this is very weird, but
do we not know of similar facts in every-day experience? The dinner bell
makes the mouth water; the sight of food does the same, even the name of a
savory dish will do the same.
Quite possibly, the learning process by which the substitute stimulus
becomes attached to the salivary reaction is more complex in man's case.
He may observe that the dinner bell means dinner, whereas the dog, we
suppose, does not definitely observe the connection of the bell and the
tasting substance. What the experiment shows is that a substitute stimulus
can become attached to a reaction under very simple conditions.
A conditioned reflex experiment on a child deserves mention. A young
child, confronted with a rabbit, showed no fear, but on the contrary
reached out his hand to take the rabbit. At this instant a loud rasping noise
was produced just behind the child, who quickly withdrew his hand with
{304} signs of fear. After this had been repeated a few times, the child
shrank from the rabbit and was evidently afraid of it. Probably it is in this
way that many fears, likes and dislikes of children originate.
The signal experiment.
Place a white rat before two little doors, both just alike except that one has
on it a yellow circle. The rat begins to explore. If he enters the door with
the yellow sign, he finds himself in a passage which leads to a box of food;
if he enters the other door he gets into a blind alley, which he explores, and

CHAPTER XIII

288

then, coming out, continues his explorations till he reaches the food box
and is rewarded. After this first trial is thus completed, place him back at
the starting point, and he is very apt to go straight to the door that
previously led to the food, for he learns simple locations very quickly. But
meanwhile the experimenter may have shifted the yellow sign to the other
door, connected the passage behind the marked door with the food box, and
closed off the other passage; for the yellow disc in this experiment always
marks the way to the food, and the other door always leads to a blind alley.
The sign is shifted irregularly from one door to the other. Whenever the rat
finds himself in a blind alley, he comes out and enters the other door, so
finally getting his reward on every trial. But for a long time he seems
incapable of responding to the yellow signal. However, the experimenter is
patient; he gives the rat twenty trials a day, keeping count of the number of
correct responses, and finds the number to increase little by little, till after
some thirty days every response is correct and unhesitating. The rat has
learned the trick.
He learns the trick somewhat more rapidly if punishment for incorrect
responses is added to reward for correct responses. Place wires along the
floor of the two passages, and switch an electric current into the blind
alley, behind {305} the door that has no yellow circle on it. When the rat
enters the blind alley and gets a shock, he makes a prompt avoiding
reaction, scampering back to the starting point and cowering there for
some time; eventually he makes a fresh start, avoids the door that led to the
shock and therefore enters the other door, though apparently without
paying any attention to the yellow sign, since when, on the next trial, the
sign is moved, he avoids the place where he got the shock, without
reference to the sign. But in a series of trials he learns to follow the sign.
Learning to respond to a signal might be classified under the head of
substitute stimulus, since the rat learns to respond to a stimulus, the yellow
disk, that at first left him unmoved. But more careful consideration shows
this to be, rather, a case of substitute response. The natural reaction of a
rat to a door is to enter it, not to look at its surface, but the experiment
forces him to make the preliminary response of attending to the appearance
of the door before entering it. The response of attending to the surface of

CHAPTER XIII

289

the door is substituted for the instinctive response of entering. Otherwise
put: the response of finding the marked door and entering that is
substituted for the response of entering any door at random.
The maze experiment.
An animal is placed in an enclosure from which it can reach food by
following a more or less complicated path. The rat is the favorite subject
for this experiment, but it is a very adaptable type of experiment and can be
tried on any animal. Fishes and even crabs have mastered simple mazes,
and in fact to learn the way to a goal is probably possible for any species
that has any power of learning whatever. The rat, placed in a maze,
explores. He sniffs about, goes back and forth, enters every passage, and
actually covers every square inch of the maze at least once; and in the
course of these explorations {306} hits upon the food box. Replaced at the
starting point, he proceeds as before, though with more speed and less
dallying in the blind alleys. On successive trials he goes less and less
deeply into a blind alley, till finally he passes the entrance to it without
even turning his head. Thus eliminating the blind alleys one after another,
he comes at length to run by a fixed route from start to finish.
[Illustration: Fig. 47.--(From Hicks.) Ground plan of a maze used in
experiments on the rat. The central square enclosure is the food box. The
dotted line shows the path taken by a rat on Its fourth trial, which occupied
4 minutes and 2 seconds.]
At first thought, the elimination of useless moves seems to tell the whole
story of the rat's learning process; but careful study of his behavior reveals
another factor. When the rat approaches a turning point in the maze, his
course bends so as to prepare for the turn; he does not simply advance to
the turning point and then make the turn, but several steps before he
reaches that point are organized or coördinated into a sort of unit.
{307}

CHAPTER XIII

290

[Illustration: Fig. 48.--(From Watson.) Learning curve for the rat in the
maze. This is a composite or average, derived from the records of four
animals. The height of the heavy line above the base line, for any trial,
indicates the number of minutes consumed in that trial in passing through
the maze and reaching the food box. The gradual descent of the curve
indicates the gradual decrease in time required, and thus pictures the
progress of the animals in learning the maze.]
The combination of steps into larger units is shown also by certain
variations of the experiment. It is known that the rat makes little use of the
sense of sight in learning the maze, guiding himself mostly by the muscle
sense. Now if the maze, after being well learned, is altered by shortening
one of the straight passages, the rat runs full tilt against the new end of the
passage, showing clearly that he was proceeding, not step by step, but by
runs of some length. Another variation of the experiment is to place a rat
that has learned a maze down in the midst of it, instead of at {308} the
usual starting point. At first he is lost, and begins exploring, but, hitting on
a section of the right path, he gets his cue from the "feel" of it, and races off
at full speed to the food box. Now his cue could not have been any single
step or turn, for these would all be too much alike; his cue must have been
a familiar sequence of movements, and that sequence functions as a unit in
calling out the rest of the habitual movement.
[Illustration: Fig. 49.--(From Watson.) A puzzle box. The animal must here
reach his paw out between the bars and raise the latch, L. A spring then
gently opens the door.]
In short, the rat learns the path by elimination of false reactions and by
combination of single steps and turns into larger reaction-units.
The puzzle-box experiment.
Place a hungry young cat in a strange cage, with a bit of fish lying just
outside, and you are sure to get action. The cat extends his paw between
the slats but cannot reach the fish; he pushes his nose between the slats but
cannot get through; he bites the slats, claws at anything small, shakes

CHAPTER XIII

291

anything loose, and tries every part of the cage. Coming to the button that
fastens {309} the door, he attacks that also, and sooner or later turns the
button, gets out, and eats the fish. The experimenter, having noted the time
occupied in this first trial, replaces the cat, still hungry, in the cage, and
another bit of fish outside. Same business, but perhaps somewhat quicker
escape. More trials, perhaps on a series of days, give gradually decreasing
times of escape. The useless reactions are gradually eliminated, till finally
the cat, on being placed in the cage, goes instantly to the door, turns the
button, goes out and starts to eat, requiring but a second or two for the
whole complex reaction. Perhaps 15 or 20 trials have been required to
reach this stage of prompt, unerring response. The course of improvement
is rather irregular, with ups and downs, but with no sudden shift from the
varied reaction of the first trial to the fixed reaction of the last. The
learning process has been gradual.
This is the typical instance of learning by "trial and error", which can be
defined as varied reaction with gradual elimination of the unsuccessful
responses and fixation of the successful one. It is also a case of the
substitute response. At first, the cat responds to the situation by reaching or
pushing straight towards the food, but it learns to substitute for this most
instinctive response the less direct response of going to another part of the
cage and turning a button.
The cat in this experiment is evidently trying to get out of the cage and
reach the food. The situation of being confined in a cage while hungry
arouses an impulse or tendency to get out; but this tendency, unable at
once to reach its goal, is dammed up, and remains as an inner directive
force, facilitating reactions that are in the line of escape and inhibiting
other reactions. When the successful response is hit upon, and the door
opened, the dammed-up energy is discharged into this response; and, by
repetition, {310} the successful response becomes closely attached to the
escape-tendency, so as to occur promptly whenever the tendency is
aroused.
There is no evidence that the cat reasons his way out of the cage. His
behavior is impulsive, not deliberative. There is not even any evidence that

CHAPTER XIII

292

the cat clearly observes how he gets out. If he made a clean-cut observation
of the manner of escape, his time for escaping should thereupon take a
sudden drop, instead of falling off gradually and irregularly from trial to
trial, as it does fall off. Trial and error learning is learning by doing, and
not by reasoning or observing. The cat learns to get out by getting out, not
by seeing how to get out.
Summary of Animal Learning
Let us take account of stock at this point, before passing to human learning,
and attempt to generalize what we have observed in animals of the process
of learning.
(1) Elimination of a response, which means detachment of a response from
the stimulus that originally aroused it, occurs in three main cases:
(a) Elimination occurs most quickly when the response brings actual pain;
the animal makes the avoiding reaction to the pain and quickly comes to
make this response to the place where the pain occurred; and thus the
positive reaction to this place is eliminated.
(b) Elimination occurs more gradually when the response, without
resulting in actual pain, brings failure or delay in reaching a goal towards
which the animal is tending. The positive response of entering and
exploring a blind alley grows weaker and weaker, till the blind alley is
neglected altogether.
(c) Elimination of a response also occurs, slowly, through negative
adaptation to a stimulus that is harmless and also useless.
{311}
(2) New attachments or linkages of stimulus and response occur in two
forms, which are called "substitute stimulus" and "substitute response".

CHAPTER XIII

293

[Footnote: The writer hopes that no confusion will be caused by his use of
several words to express this same meaning. "Attachment of stimulus and
response", "linkage of stimulus and response", "connection between
stimulus and response", and "bond between stimulus and response", all
mean exactly the same; but sometimes one and sometimes another seems to
bring the meaning more vividly to mind.]
(a) Substitute stimulus refers to the case where the natural response is not
itself modified, but becomes attached to another stimulus than the one that
originally aroused it. This new linkage can sometimes be established by
simply giving the original stimulus and the substitute stimulus at the same
time, and doing so repeatedly, as in the conditioned reflex experiment.
(b) Substitute response refers to the case where the stimulus remaining as it
originally was, a new reaction is attached to it in place of the original
response. The conditions under which this takes place are more complex
than those that give the substitute stimulus. A tendency towards some goal
must first be aroused, and then blocked by the failure of the original
response to lead to the goal. The dammed-up tendency then facilitates other
responses, and gives trial and error behavior, till some one of the trial
responses leads to the goal; and this successful response is gradually
substituted for the original response, and becomes firmly attached to the
situation and tendency.
(3) New combinations of responses occur, giving higher motor units.
Human Learning
To compare human and animal learning, and notice in what ways the
human is superior, cannot but throw light on the whole problem of the
process of learning. It is obvious {312} that man learns more quickly than
the animals, that he acquires more numerous reactions, and a much greater
variety of reactions; but the important question is how he does this, and
how his learning process is superior.

CHAPTER XIII

294

We must first notice that all the forms of learning displayed by the animal
are present also in the human being. Negative adaptation is important in
human life, and the conditioned reflex is important, as has already been
suggested. Without negative adaptation, the adult would be compelled to
attend to everything that aroused the child's curiosity, to shrink from
everything that frightened the child, to laugh at everything that amused the
child. The conditioned reflex type of learning accounts for a host of
acquired likes and dislikes. Why does the adult feel disgust at the mere
sight of the garbage pail or the mere name of cod liver oil? Because these
inoffensive visual and auditory stimuli have been associated, or paired,
with odors and tastes that naturally aroused disgust.
The signal experiment is duplicated thousands of times in the education of
every human being. He learns the meaning of signs and slight indications;
that is, he learns to recognize important facts by aid of signs that are of
themselves unimportant. We shall have much to say on this matter in a later
chapter on perception. Man learns signs more readily than such an animal
as the rat, in part because the human being is naturally more responsive to
visual and auditory stimuli. Yet the human being often has trouble in
learning to read the signs aright. He assumes that a bright morning means
good weather all day, till, often disappointed, he learns to take account of
less obvious signs of the weather. Corrected for saying, "You and me did
it", he adopts the plan of always saying "you and I", but finds that this quite
unaccountably brings ridicule on him at times, so that gradually he may
come to say the one or the {313} other according to obscure signs
furnished by the structure of the particular sentence. The process of
learning to respond to obscure signs seems to be about as follows:
something goes wrong, the individual is brought to a halt by the bad results
of his action, he then sees some element in the situation that he had
previously overlooked, responds to this element, gets good results, and
so--perhaps after a long series of trials--comes finally to govern his action
by what seemed at first utterly insignificant.
Trial and error learning, though often spoken of as characteristically
"animal", is common enough in human beings. Man learns by impulsively
doing in some instances, by rational analysis in others. He would be at a

CHAPTER XIII

295

decided disadvantage if he could not learn by trial and error, since often
the thing he has to manage is very difficult of rational analysis. Much
motor skill, as in driving a nail, is acquired by "doing the best you can",
getting into trouble, varying your procedure, and gradually "getting the
hang of the thing", without ever clearly seeing what are the conditions of
success.
Human Compared With Animal Learning
Fairly direct comparisons have been made between human and animal
learning of mazes and puzzles. In the maze, the human subject has an initial
advantage from knowing he is in a maze and has to master it, while the rat
knows no more than that he is in a strange place, to be explored with
caution on the odd chance that it may contain something eatable, or
something dangerous. But, after once reaching the food box, the rat begins
to put on speed in his movements, and within a few trials is racing through
the maze faster than the adult man, though not so fast as a child. Adults are
more circumspect and dignified, they make less speed, cover less distance,
but also make fewer false moves {314} and finish in less time. That is in the
early trials; adults do not hold their advantage long, since children and
even rats also reach complete mastery of a simple maze in ten or fifteen
trials.
The chief point of superiority of adults to human children, and of these to
animals, can be seen in the adjacent table. It is in the first trial that the
superiority of the adults shows most clearly. They get a better start, and
adapt themselves to the situation more promptly. Their better start is due to
(1) better understanding of the situation at the outset, (2) more plan, (3)
less tendency to "go off on a tangent", i.e., to respond impulsively to every
opening, without considering or looking ahead. The adult has more
inhibition, the child more activity and responsiveness; the adult's inhibition
stands him in good stead at the outset, but the child's activity enables him
to catch up shortly in so simple a problem as this little maze.
AVERAGE NUMBER OF ERRORS MADE, IN EACH TRIAL IN
LEARNING A MAZE, BY RATS, CHILDREN AND ADULT MEN

CHAPTER XIII

296

(From Hicks and Carr)
Trial No. Rats Children Adults
1 53 35 10 2 45 9 15 3 30 18 5 4 22 11 2 5 11 9 6 6 8 13 4 7 9 6 2 8 4 6 2 9
9 5 1 10 3 5 1 11 4 1 0 12 5 0 1 13 4 1 1 14 4 0 1 15 4 1 1 16 2 0 1 17 1 0 1
The table reads that, on the first trial in the maze, the rats averaged 53
errors, the children 35 errors, and the adults 10 errors, and so on. An
"error" consisted in entering a blind alley or in turning back on {315} the
course. The subjects tested consisted of 23 rats, five children varying in age
from 8 to 18 years, and four graduate students of psychology. The human
maze was much larger than those used for the rats, but roughly about the
same in complexity. Since rats are known to make little use of their eyes in
learning a maze, the human subjects were blindfolded. The rats were
rewarded by food, the others simply by the satisfaction of success.
The puzzle boxes used in experiments on animal learning are too simple for
human adults, but mechanical puzzles present problems of sufficient
difficulty. The experimenter hands the subject a totally unfamiliar puzzle,
and notes the time required by the subject to take it apart; and this is
repeated in a series of trials till mastery is complete. In addition to taking
the time, the experimenter observes the subject's way of reacting, and the
subject endeavors at the end of each trial to record what he has himself
observed of the course of events.
The human subject's behavior in his first trial with a puzzle is often quite of
the trial and error sort. He manipulates impulsively; seeing a possible
opening he responds to it, and meeting a check he backs off and tries
something else. Often he tries the same line of attack time and time again,
always failing; and his final success, in the first trial, is often accidental
and mystifying to himself.
On the second trial, he may still be at a loss, and proceed as before; but
usually he has noticed one or two facts that help him. He is most likely to
have noticed where he was in the puzzle when his accidental success

CHAPTER XIII

297

occurred; for it appears that locations are about the easiest facts to learn
for men as well as animals. In the course of a few trials, also, the human
subject notices that some lines of attack are useless, and therefore
eliminates them. After a time he may "see into" the puzzle more or less
clearly, though sometimes he gets a practical mastery of the handling of the
puzzle, while still obliged to confess that he does not understand it at all.
{316}
Insight, when it does occur, is of great value. Insight into the general
principle of the puzzle leads to a better general plan of attack, and insight
into the detailed difficulties of manipulation leads to smoother and defter
handling. The human "learning curve" (see Figure 50) often shows a
prolonged stretch of no improvement, followed by an abrupt change to
quicker work; and the subject's introspections show that 76 per cent, or
more of these sudden improvements followed immediately after some fresh
insight into the puzzle.
[Illustration: Fig. 50.--(From Ruger.) Curve for human learning of a
mechanical puzzle. Distance above the base line represents the time
occupied in each trial, the successive trials being arranged in order from
left to right. A drop in the curve denotes a decrease in time, and thus an
improvement. At X, the subject saw something about the puzzle that he had
not noticed before and studied it out with some care, so increasing his time
for this one trial, but bringing the time down thereafter to a new and steady
level.]
The value of insight appears in another way when the subject, after
mastering one puzzle, is handed another involving the same principle in a
changed form. If he has seen the principle of the first puzzle, he is likely to
carry over this knowledge to the second, and master this readily; {317} but
if he has simply acquired motor skill with the first puzzle, without any
insight into its principle, he may have as hard a time with the second as if
he had never seen the first.
Learning by Observation

CHAPTER XIII

298

"We learn by doing" is a true proverb, in the sense that we acquire a
reaction by making just that reaction. We must make a reaction in order to
get it really in hand, so that the proverb might be strengthened to read, "To
learn, we must do". But we should make it false if we strengthened it still
further and said "We learn only by doing". For human beings, at least,
learn also by observing.
The "insight" just spoken of consists in observing some fact--often some
relationship--and the value of insight in hastening the process of learning is
a proof that we learn by observation as well as by actual manipulation. To
be sure, observation needs to be followed by manipulation in order to give
practical mastery of a thing, but manipulation without observation means
slow learning and often yields nothing that can be carried over to a
different situation.
Learning by observation is typically human. The adult's superiority in
tackling a maze may be summed up by saying that he observes more than
the child--much more than the animal--and governs his behavior by his
observations. The enormous human superiority in learning a simple puzzle,
of the sort used in experiments on animals, arises from seeing at once the
key to the situation.
A chimpanzee--one of the most intelligent of animals--was tested with a
simple puzzle box, to be opened from outside by turning a button that
prevented the door from opening. The device was so simple that you would
expect the animal to see into it at once. A banana was put into the box and
the door fastened with the button. The {318} chimpanzee quickly found the
door, and quickly found the button, which he proceeded to pull about with
one hand while pulling the door with the other. Without much delay, he had
the button turned and the door open. After about three trials, he had a
practical mastery of the puzzle, showing thus considerable superiority over
the cat, who would more likely have required twelve or fifteen trials to
learn the trick. But now a second button was put on a few inches from the
first, both being just alike and operating in the same way. The chimpanzee
paid no attention to this second button, but turned the first one as before,
and when the door failed to open, kept on turning the first button, opening

CHAPTER XIII

299

it and closing it and always tugging at the door. After a time, he did shift to
the second button, but as he had left the first one closed, his manipulation
of the second was futile. It was a long, hard job for him to learn to operate
both buttons correctly; and the experiment proved that he did not observe
how the button kept the door from opening, but only that the button was the
thing to work with in opening the door. At one time, indeed, in order to
force him to deal with the second button, the first one was removed, but he
still went to the place where it had been and fingered about there. What he
had observed was chiefly the place to work at in order to open the door. We
must grant that animals observe locations, but most of their learning is by
doing and not by observing.
Here is another experiment designed to test the ability of animals to learn
by observation. The experimenter takes two cats, one having mastered a
certain puzzle box, the other not, and places the untrained cat where it can
watch the trained one do its trick. The trained cat performs repeatedly for
the other's benefit, and is then taken away and the untrained cat put into
the puzzle box. But he has derived no benefit from what has gone on before
his eyes, and must learn by trial {319} and error, the same as any other
cat; he does not even learn any more quickly than he otherwise would have
done.
The same negative results are obtained even with monkeys, but the
chimpanzee shows some signs of learning by observation. One chimpanzee
having learned to extract a banana from a long tube by pushing it out of the
further end with a stick which the experimenter had kindly left close by,
another chimpanzee was placed where he could watch the first one's
performance and did watch it closely. Then the first animal was taken away
and the second given a chance. He promptly took the stick and got the
banana, without, however, imitating the action of the first animal exactly,
but pulling the banana towards him till he could reach it. This has been
called learning by imitation, but might better be described as learning by
observation.
Such behavior, quite rare among animals, is common in human children,
who are very observant of what older people do, and imitate them on the

CHAPTER XIII

300

first opportunity, though often this comes after an interval. The first time a
child speaks a new word is usually not right after he has heard it. When, on
previous occasions, he has heard this word, he has not attempted to copy it,
but now he brings it out of himself. He has not acquired the word by direct
imitation, evidently, but by what has been called "delayed imitation", which
consists in observation at the time followed later by attempts to do what has
been observed. Observation does not altogether relieve the child of the
necessity of learning by trial and error, for often his first imitations are
pretty poor attempts; but observation gives him a good start and hastens
the learning process considerably. "Learning by imitation", then, is, more
properly, "learning by observation followed by trial and error" and the
reason so little of it appears in animals is their lack of observation.
Learning by thinking depends on observation, since in {320} thought we
make use of facts previously observed. Seldom, unless in the chimpanzee
and other manlike apes, do we see an animal that appears to be thinking.
The animal is always doing, or waiting, or sleeping. He seems too
impulsive to stop and think. But a man may observe something in the
present problem that calls previous observations to mind, and by mentally
combining observations made at different times may figure out the solution
before beginning motor manipulation. Usually, however, some
manipulation of the trial and error sort is needed before the thought-out
solution will work perfectly.
Sometimes mental rehearsal of a performance assists in learning it, as we
see in the beginner at automobile driving, who, while lying in bed after his
first day's experience, mentally goes through the motions of starting the
engine and then the car, and finds that this "absent treatment" makes the
car easier to manage the next day.
In summing up the points of superiority of human over animal learning, we
may note that-1. Man is perhaps a quicker learner, anyway, without regard to his better
methods of learning. This, however, is open to doubt, in view of the very
rapid learning by animals of such reactions as the avoidance of a place

CHAPTER XIII

301

where they have been hurt.
2. Man is a better observer, and this is the great secret of his quick
learning. He is especially strong in observing relationships, or "principles"
as we often call them.
3. He has more control over his impulses, and so finds time and energy for
observing and thinking.
4. He is able to work mentally with things that are not present; he
remembers things he has seen, puts together facts observed at different
times, thinks over problems that are not actually confronting him at the
moment, and maps out plans of action.
{321}
The Learning of Complex Practical Performances
A great deal of light has been thrown on the learning process by
psychological studies of the course of improvement in mastering such
trades as telegraphy and typewriting.
A student of telegraphy was tested once a week to see how rapidly he could
send a message, and also how rapidly he could "receive a message off the
wire", by listening to the clicking of the sounder. The number of letters sent
or received per minute was taken as the measure of his proficiency. This
number increased rapidly in the first few weeks, and then more and more
slowly, giving a typical learning curve, or "practice curve", as it is also
called.
[Illustration: Fig. 51.--(From Bryan and Harter.) Practice curve of student
W. J. R. in learning telegraphy. The height of the curve indicates the
number of letters sent or received per minute. Therefore a rise of the curve
here indicates improvement.]

CHAPTER XIII

302

The curve for sending, aside from minor irregularities, rose with a fairly
smooth sweep, tapering off finally towards the "physiological limit", the
limit of what the nerves and muscles of this individual could perform.
[Footnote: A good example of the physiological limit is seen in the hundred
yard dash, since apparently no one, with the best of training, can lower the
record much below ten seconds; and any given individual's limit may be
considerably worse than this, according to his build, muscular strength and
quickness of nerve centers. The simple reaction gives another good
example; every one has his limit, beyond which no amount of training will
lower his reaction time; the neuromuscular system simply will not work any
faster.]
The receiving {322} curve rose more slowly than the sending curve, and
flattened out after about four months of practice, showing little further
improvement for the next two months. This was a discouraging time for the
student, for it seemed as if he could never come up to the commercial
standard. In fact, many learners drop out at this stage. But this student
persisted, and, after the long period of little improvement, was gratified to
find his curve going up rapidly again. It went up rapidly for several
months, and when it once more tapered off into a level, he was well above
the minimum standard for regular employment.
Such a flat stretch in a practice curve, followed by a second rise--such a
period of little or no improvement, followed by rapid improvement--is
called a "plateau". Sometimes due to mere discouragement, or to the
inattention that naturally supervenes when an act becomes easy to perform,
it often has a different cause. It may, in fact, represent a true physiological
limit for the act as it is being performed, and the subsequent rise to a
higher level may result from improved methods of work. That was probably
the case with the telegrapher.
[Footnote: A plateau of this sort is present in the learning curve for
mastery of a puzzle, given on p. 316.]

CHAPTER XIII

303

The telegrapher acquires skill by improving his methods, rather than by
simply speeding up. He acquires methods that he didn't dream of at first. At
the start, he must learn the alphabet of dots and dashes. This means, for
purposes of sending, that he must learn the little rhythmical pattern of
finger movements that stands for each letter; and, for purposes of
receiving, that he must learn the rhythmical {323} pattern of clicks from the
sounder that stands for a letter. When he has learned the alphabet, he is
able to send and receive slowly. In sending, he spells out the words, writing
each letter as a separate act. In receiving, at this early stage, he must pick
out each separate letter from the continuous series of clicks that he hears
from the sounder. By degrees, the letters become so familiar that he goes
through this spelling process easily; and, doing now so much better than at
the outset, he supposes he has learned the trade, in its elements, and needs
only to put on more speed.
But not at all! He has acquired but a small part of the necessary
stock-in-trade of the telegrapher. He has his "letter habits", but knows
nothing as yet of "word habits". These gradually come to him as he
continues his practice. He comes to know words as units, motor units for
sending purposes, auditory units for receiving. The rhythmical pattern of
the whole word becomes a familiar unit. Short, much used words are first
dealt with as units, then more and more words, till he has a large
vocabulary of word habits. A word that has become a habit need not be
spelled out in sending, nor laboriously dug out letter by letter in receiving;
you simply think the word "train", and your finger taps it out as a
connected unit; or, in receiving, you recognize the characteristic pattern of
this whole series of clicks. When the telegrapher has reached this word
habit stage, he finds the new method far superior, in both speed and
sureness, to the letter habit method which he formerly assumed to be the
whole art of telegraphy. He does not even stop with word habits, but
acquires a similar control over familiar phrases.
Higher Units and Overlapping
The acquisition of skill in telegraphy consists mostly in learning these
higher units of reactions. It is the same in {324} learning to typewrite. First

CHAPTER XIII

304

you must learn your alphabet of letter-striking movements; by degrees you
reduce these finger movements to firm habits, and are then in the
letter-habit stage, in which you spell out each word as you write it. After a
time, you write a familiar word without spelling it, by a coördinated series
of finger movements; you write by word units, and later, in part, by phrase
units; and these higher units give you speed and accuracy.
Along with this increase in the size of the reaction-units employed goes
another factor of skill that is really very remarkable. This is the
"overlapping" of different reactions, a species of doing two or more things
at once, only that the two or more reactions are really parts of the same
total activity. The simplest sort of overlap can be illustrated at an early
stage in learning to typewrite. The absolute beginner at the typewriter, in
writing "and", pauses after each letter to get his bearings before starting on
the next; but after a small amount of practice he will locate the second
letter on the keyboard while his finger is still in the act of striking the first
letter. Thus the sensory part of the reaction to the second letter commences
before the motor part of reacting to the first letter is finished; and this
overlap does away with pauses between letters and makes the writing
smoother and more rapid.
With further practice in typewriting, when word habits and phrase habits
are acquired, overlap goes to much greater lengths. One expert kept her
eyes on the copy about four words ahead of her fingers on the keyboard,
and thus was reacting to about four words at the same time: one word was
just being read from the copy, one word was being written, and the two
words between were being organized and prepared for actual writing. The
human typewriting mechanism, consisting of eye, optic nerve, parts of the
brain and cord, motor nerves and muscles, works somewhat like one of
{325} those elaborate machines which receive raw material steadily at one
end perform a series of operations upon it, and keep turning out finished
product at the other end.
All this is very remarkable, but the same sort of overlapping and working
with large units can be duplicated in many linguistic performances that
every one makes. In reading aloud, the eyes keep well ahead of the voice,

CHAPTER XIII

305

and seeing, understanding and pronouncing are all applied simultaneously
to different words of the passage read. In talking, the ideas keep developing
and the spoken words tag along behind.
[Illustration: Fig. 52.--(From Book.) Practice curve of a young man
learning to typewrite. Each point on the "curve" represents a daily record
in number of strokes per minute. With improvement, the curve rises.]
In telegraphy and typewriting, it is almost inevitable that the learner should
start with the alphabet and proceed to gradually larger units. But in
learning to talk, or to read, the process goes the other way. The child
understands spoken words and phrases before breaking them up into their
elementary vocal sounds; and he can better be taught to read by beginning
with whole words, or even with whole {326} sentences, than by first
learning the alphabet and laboriously spelling out the words. In short, the
learning process often takes its start with the higher units, and reaches the
smaller elements only for the purpose of more precise control.
Moderate Skill Acquired in the Ordinary Day's Work
Merely repeating a performance many times does not give the high degree
of skill that we see in the expert telegrapher or typist. Ordinarily, we
practise much less assiduously, are much less zealous, and have no such
perfect measure of the success of our work. For "practice to make perfect",
it must be strongly motivated, and it must be sharply checked up by some
index or measure of success or failure. If the success of a performance can
be measured, and chalked up before the learner's eyes in the form of a
practice curve, so that he can see his progress, this acts as a strong
incentive to rapid improvement.
Ordinarily, we have no clear indication of exactly how well we are doing,
and are satisfied if we get through our job easily and without too much
criticism and ridicule from people around. Consequently we reach only a
moderate degree of skill, nowhere near the physiological limit, and do not
acquire the methods of the real expert.

CHAPTER XIII

306

This is very true of the manual worker. Typesetters of ten or more years'
experience were once selected as subjects for an experiment on the effects
of alcohol, because it was assumed that they must have already reached
their maximum skill. In regard to alcohol, the result was that this drug
caused a falling off in speed and accuracy of work--but that is another
story. What we are interested in here is the fact that, as soon as these
long-practised operators found themselves under observation, and their
work measured, they all began to improve and in the course of a couple of
weeks {327} reached quite a new level of performance. Their former level
had been reasonably satisfactory under workaday conditions, and special
incentive was needed to make them approach their limit.
A similar condition of affairs has been disclosed by "motion studies" in
many kinds of manual work; the movements of the operative have been
photographed or closely examined by the efficiency expert, and analyzed to
determine whether there are any superfluous movements that could be
eliminated, and whether a different method of work would be economical of
time and effort. Usually, superfluous motion has been found and
considerable economy seen to be possible. There is evidently no law of
learning to the effect that continued repetition of a performance necessarily
makes it perfect in speed, ease, or adaptation to the task in hand. What the
manual worker attains as the result of prolonged experience is a passable
performance, but not at all the maximum of skill.
The brain worker has little to brag of as against the manual worker. He,
too, is only moderately efficient in doing his particular job. There are
brilliant exceptions--bookkeepers who add columns of figures with great
speed and precision, students who know just how to put in two hours of
study on a lesson with the maximum of effect, writers who always say just
what they wish to say and hit the nail on the head every time--but the great
majority of us are only passable. We need strong incentive, we need a clear
and visible measure of success or failure, we need, if such a thing were
possible, a practice curve before us to indicate where we stand at the
present moment with respect to our past and our possible future.
{328}

CHAPTER XIII

307

Habit
A habit is contrasted with a reflex, in that the reflex is native, the habit
acquired; but both are alike in being prompt and automatic reactions. The
best antithesis to a habit is the response of a person to a novel situation,
where neither nature nor previous experience gives him a ready response.
The new response is exploratory and tentative, while habit is fixed and
definite. The new response is variable, the habit regular. The new response
is slow and uncertain, the habit fairly quick and accurate. The new
response is attended by effort and strained attention, the habit is easy and
often only half-conscious. The new response is apt to be unsatisfying to the
one who makes it, while habit is comfortable and a source of satisfaction.
To break a habit is most uncomfortable. Nature--at least that "second
nature" which is habit--calls aloud for the customary performance.
Strenuous effort is required to get out of the rut, and the slipping back into
the rut which is almost sure to occur in moments of inadvertence is
humiliating. Result--usually the habit sticks.
But if the habit simply must be broken? Breaking a habit is forming a
counter-habit, and the more positive the counter-habit the better for us.
This counter-habit must not be left to form itself, but must be practised
diligently. Strong motivation is necessary, no half-hearted acquiescence in
somebody else's injunction to get rid of the habit. We must adopt the
counter-habit as ours, and work for a high standard of skill in it. For
example, if we come to realize that we have a bad habit of grouchiness with
our best friends, it is of little use merely to attempt to deaden this habit; we
need to aim at being a positive addition to the company whenever we are
present, and to practise the art of being good company, checking up our
efforts to be sure we are hitting {329} the right vein, and persisting in our
self-training till we become real artists. It takes some determination for a
grouchy individual to make such a revolution in his conduct; his
self-assertion resists violently, for the grouchiness is part and parcel of
himself and he hates to be anything but himself. He must conceive a new
and inspiring ideal of himself, and start climbing up the practice curve
towards the new ideal.

CHAPTER XIII

308

{330}
EXERCISES
1. Outline the chapter.
2. Which of the acts performed in eating breakfast are instinctive, which
are matters of habit, and which are partly the one and partly the other?
3. Compare your mental attitude in approaching an unfamiliar and a
familiar task.
4. How does the performance of the expert in swimming or dancing, etc.,
differ from the performance of the beginner? Analyze out the points of
superiority.
5. Show that the element of trial and error is present in (a) the child's
learning to pronounce a word, and (b) learning "how to take" a person so
as to get on well with him.
6. Why is it that our handwriting, though exercised so much, is apt to grow
worse rather than better, while on the contrary our spelling is apt to
improve?
7. How would you rate your efficiency in study? Is it near your
physiological limit, on a plateau, or in a stage of rapid improvement?
8. A practice experiment. Take several pages of uniform printed matter,
and mark it off into sections of 15 lines. Take your time for marking every
word in one section that contains both e and r. The two letters need not be
adjacent, but must both be present somewhere In the word. Having
recorded your time for this first section, do the same thing with the next
section, and so on for 12 sections. What were you able to observe,
introspectively, of your method of work and changes with practice. From
the objective observations, construct a practice curve.

CHAPTER XIII

309

9. Write brief explanations of the following terms: practice habit higher
unit overlapping plateau physiological limit insight trial and error negative
adaptation substitute stimulus substitute response conditioned reflex
{331}
REFERENCES
Thorndike's Animal Intelligence, Experimental Studies, 1911, reports his
own pioneer work in this field. See also Chapter X in the same author's
Educational Psychology, Briefer Course, 1914.
For other reviews of the work on animal learning, see Watson's Behavior,
1914, pp. 184-250; also Washburn's Animal Mind, 2nd edition, 1917, pp.
257-312.
For human learning and practice, see Thorndike's Educational Psychology,
Briefer Course, 1914, Chapters XIV and XV; also Starch's Educational
Psychology, 1919, Chapter XI.
For an experiment showing the acquisition of fears by a child, see Watson
and Raynor, "Conditioned Emotional Reactions", in the Journal of
Experimental Psychology, 1920, Vol. 3, pp. 1-14.
James's chapter on "Habit", in his Principles of Psychology, 1890, Vol. I, is
a classic which every one should read.
{332}

CHAPTER XIV

310

CHAPTER XIV
MEMORY
HOW WE MEMORIZE AND REMEMBER, AND IN WHAT RESPECTS
MEMORY CAN BE MANAGED AND IMPROVED
So much depends on a good memory in all walks of life, and especially in
brain work of any sort, that perhaps it is no wonder that many students and
business and professional men become worried about their memories and
resort to "memory training courses" in the hope of improvement. The
scientific approach to this very practical problem evidently lies through a
careful study of the way in which memory works, and the general problem
may be expressed in the question, how we learn and remember. This large
problem breaks up, on analysis, into four subordinate questions: how we
commit to memory, how we retain what has been committed to memory,
how we get it back when we want it, and how we know that what we now
get back is really what we formerly committed to memory. In the case of a
person's name which we wish to remember, how do we "fix it in mind", how
do we carry it around with us when we are not thinking of it, how do we
call it up when needed, and what assures us that we have called up the
right name? The four problems may be named those of
(1) Memorizing, or learning, (2) Retention (3) Recall (4) Recognition
{333}
The Process of Memorizing
As memorizing is one sort of learning, what we have found in the preceding
chapter regarding the learning process should throw light on our present
problem. We found animals to learn by doing, and man by doing and also
by observation or observation combined with doing. Observation is itself a
form of doing, a mental reaction as distinguished from a purely passive or
receptive state; so that learning is always active. Observation we found to
be of great assistance, both by way of hastening the learning process, and

CHAPTER XIV

311

by way of making what is learned more available for future use. Our
previous studies of learning thus lead us to inquire whether committing to
memory may not consist partly in rehearsing what we wish to learn, and
partly in observing it. Learning by rote, or by merely repeating a
performance over and over again, is, indeed, a fact; and observant study is
also a fact.
Let us see how learning is actually done, as indicated by laboratory
experiments. The psychologist experiments a great deal with the
memorizing of nonsense material, because the process can be better
observed here, from the beginning, than when sensible material is learned.
Suppose a list of twenty one-place numbers is to be studied till it can be
recited straight through. The learner may go at it simply by "doing", which
means here by reading the list again and again, in the hope that it will
finally stick. This pure rote learning will perhaps do the job, but it is slow
and inefficient. Usually the learner goes to work in quite a different way.
He observes various facts about the list. He notices what numbers occur at
the beginning and end, and perhaps in other definite positions. He may
group the digits into two-place or three-place numbers, and notice the
characteristics of these. Any familiar combinations that {334} may occur,
such as 1492, he is likely to spy and remember. Lacking these, he can at
least find similar and contrasting number-groups.
For example, the list
5 7 4 0 6 2 7 3 5 1 4 0 9 2 8 6 3 8 0 1,
which at first sight seemed rather bare of anything characteristic, was
analyzed in a way partly indicated by the commas and semicolons,
5, 74, 0; 62, 73; 5140; 9, 286; 380, 1,
and memorized easily. These observed facts transformed the list from a
shapeless mass into something having definite characteristics, and the
observed characteristics stuck in mind and held the rest together.

CHAPTER XIV

312

Lists of nonsense syllables, such as
wok pam zut bip seg ron taz vis lab mer koj yad
are apt to be learned largely by observation of similarities and contrasts,
by reading meanings into the syllables, and by grouping into pairs and
reading rhythmically. Grouping reduces the twelve syllables to six
two-syllabled nonsense words, some of which may suggest meaningful
words or at least have a swing that makes them easy to remember. Perhaps
the first syllable of every pair is accented, and a pause introduced after
each pair; such devices assist memorizing.
The rhythmical and other groups that are found or made by the learner in
memorizing nonsense lists are, in effect, "higher units", and have much the
same value as the higher units of telegraphy or typewriting. One who
learns many lists in the course of a laboratory experiment develops a {335}
regular system of grouping. First he reads the list through, in groups of
two, three or four items, noticing each group as a whole; later, he notices
the items in each group and how they are related to each other. He also
notices the interrelations of different groups, and the position of each
group in the total series. All this is quite different from a mere droning
along through the items of the list; it is much more active, and much more
observant.
Very interesting are the various ways in which the learner attacks a list of
nonsense syllables, numbers, or disconnected words. He goes to work
something like the cat trying to escape from a strange cage. He proceeds by
a sort of trial and error observation; he keeps looking for something about
the list that will help to fix it. He sees something that promises well for a
moment, then gives it up because he sees something better. He notices
positions, i.e., connects items with their position in the list. He finds
syllables that stand out as peculiar in some way, being "odd", "fuzzy",
smooth, agreeable, disagreeable, or resembling some word, abbreviation
or nickname. He notes resemblances and contrasts between different
syllables. He also finds groups that resemble each other, or that resemble
words.

CHAPTER XIV

313

Besides what he actually finds in the list, he imports meanings, more or less
far-fetched, into the list. He may make a rhythmical line of verse out of it;
he may make a story out of it. In short, he both explores the list as it stands
and manipulates it into some shape that promises to be rememberable.
His line of attack differs according to the particular test that is later to be
made of his memory. Suppose he is shown a number of pictures, with the
understanding that later those now shown are to be mixed with others, and
that he must then pick out those now shown--then he simply examines each
picture for something characteristic. But {336} suppose each picture is
given a name, and he must later tell the name of each--then he seeks for
something in the picture that can be made to suggest its name. Or suppose,
once more, that the pictures are spread out before him in a row, and he is
told that they will later be mixed and he be required to rearrange them in
the same order in which they are now shown--then he seeks for
relationships between the several pictures. His process of memorizing,
always observant, exploratory and manipulatory, differs in detail
according to the memory task that he expects later to perform.
For another example, suppose an experiment is conducted by the method of
"paired associates". The subject is handed a list of pairs of words, such as
soprano emblem grassy concise nothing ginger faraway kettle shadow next
mercy scrub hilltop internal recite shoestring narrative thunder seldom
harbor jury eagle windy occupy squirm hobby balloon multiply necktie
unlikely supple westbound obey inch broken relish spellbound ferment
desert expect
He must learn to respond with the second word of each pair when the first
word of the pair is given. What he does, in learning this lesson, is to take
each pair of words as a unit, and try to find something in the pair that shall
make it a firm unit. It may be simply the peculiar sound or look of a pair
that he notes, or it may be some connection {337} of meaning. Perhaps the
pair suggests an image or a little story. After a few readings, he has the
pairs so well in hand that he can score almost one hundred per cent., if
tested immediately.

CHAPTER XIV

314

But now suppose the experimenter springs a surprise, by asking the subject,
as far as possible, to recite the pairs in order, or to tell, after completing
one pair, what was the first word of the next pair. The subject can do very
little at this, and protests that the test is not fair, since he "paid no attention
to the order of the pairs, but concentrated wholly on each pair separately".
Had he expected to recite the whole list of pairs in order, he would have
noticed the relationship of successive pairs, and perhaps woven them into a
sort of continued story.
In memorizing connected passages of prose or poetry, the "facts observed"
are the general sense and drift of the passage, the meanings of the parts
and their places in the general scheme, the grammatical structure of the
sentences and phrases, and the author's choice of particular words.
Memorizing here is the same general sort of observant procedure as with
nonsense material, greatly assisted by the familiar sequences of words and
by the connected meaning of the passage, so that a connected passage can
be learned in a fraction of the time needed to memorize an equally long list
of unrelated words. No one in his senses would undertake to memorize an
intelligible passage by the pure rote method, for this would be throwing
away the best possible aid in memorizing; but you will find students who
fail to take full advantage of the sense, because, reading along passively,
they are not on the alert for general trends and outlines. For fixing in mind
the sense of a passage, the essential thing is to see the sense. If the student
gets the point with absolute clearness, he has pretty well committed it to
memory.
{338}
Short-circuiting.
The peculiarities of words or syllables in a list or passage that is being
memorized, the relationships observed among the parts, and the meanings
suggested or imported into the material, though very useful in the early
stages of memorizing, tend to drop out of mind as the material becomes
familiar. A pair of syllables, "lub--mer", may have first been associated by
turning them into "love mother", but later this meaning fades out, and the

CHAPTER XIV

315

two syllables seem simply to belong together in their own right. A pair of
words, like "seldom--harbor", that were first linked together by the
intermediary thought of a boat that seldom came into the harbor, become
directly bound together as mere words. A short-circuiting occurs, indirect
attachments giving way to direct. Even the outline and general purpose of a
connected passage may fade out of mind, when the passage becomes well
learned, so that it may be almost impossible for a schoolboy, who has
learned his little speech by heart, to deliver it with any consciousness of its
real meaning. A familiar act flattens out and tends to become automatic
and mechanical.
Economy in Memorizing
Memorizing is a form of mental work that is susceptible of management,
and several principles of scientific management have been worked out that
may greatly assist in the learning of a long and difficult lesson. The
problem has been approached from the angle of economy or efficiency.
Suppose a certain amount of time is allowed for the study of a lesson, how
can this time be best utilized?
The first principle of economy has already been sufficiently emphasized:
observant study, directed towards the finding of relationships and
significant facts, is much more efficient than mere dull repetition.
{339}
The value of recitation in memorizing.
"Recitation" here means reciting to oneself. After the learner has read his
lesson once or twice, he may, instead of continuing simply to read it,
attempt to recite it, prompting himself without much delay when he is stuck,
and verifying his recitation by reference to the paper. The question is
whether this active reciting method of study is or is not economical of time
in memorizing, and whether or not it fixes the lesson durably in memory.
The matter has been thoroughly tested, and the answer is unequivocally in
favor of recitation. The only outstanding question is as to how soon to start

CHAPTER XIV

316

attempting to recite, and probably no single answer can be given to this
question, so much depends on the kind of material studied, and on
peculiarities of the individual learner. Where the sense rather than the
exact wording of a lesson has to be learned, it is probably best to recite, in
outline, after the first reading, and to utilize the next reading for filling in
the outline.
The results of one series of experiments on this matter are summarized in
the adjoining table.
THE VALUE OF RECITATION IN MEMORIZING (from Gates)
Material studied 16 nonsense syllables 5 short biographies, totalling about
170 words
Per cent, remembered Per cent. remembered
immediately after 4 hours immediately after 4 hours
All time devoted to reading 35 15 35 16
1/5 of time devoted to recitation 50 26 37 19
2/5 of time devoted to recitation 54 28 41 25
3/5 of time devoted to recitation 57 37 42 26
4/5 of time devoted to recitation 74 48 42 26
The time devoted to study was in all cases 9 minutes, and this time was
divided between reading and recitation in different proportions as stated in
the first column at the left. Reading down the next column, {340} we find
that when nonsense syllables were studied and the test was conducted
immediately after the close of the study period, 35 per cent. were
remembered when all the study time had been devoted to reading, 50 per
cent, when the last 1/5 of the study time had been devoted to recitation, 54

CHAPTER XIV

317

per cent when the last 2/5 of the time had been devoted to recitation; and so
on. The next column shows the per cents. remembered four hours after the
study period. Each subject in these experiments had before him a sheet of
paper containing the lesson to be studied, and he simply read it till the
experimenter gave a signal to recite, after which the subject recited the
lesson to himself as well as he could, prompting himself from the paper as
often as necessary, and proceeded, thus till the end of the study period. The
subjects in these particular experiments were eighth grade children; adult
subjects gave the same general results.
Three facts stand out from the table: (1) Reading down the columns, we see
that recitation was always an advantage. (2) The advantage was more
marked in the test conducted four hours after study than in the test
immediately following the study. To be sure, there is always a falling off
from the immediate to the later test; there is bound to be some forgetting
when the lesson has been studied for so short a time as here; but the
forgetting proceeds more slowly after recitation than after all reading.
Recitation fixes the matter more durably. (3) The advantage of recitation is
less marked in the meaningful material than in case of nonsense syllables,
though it is marked in both cases. The reason is that meaningful material
can better be read observantly, time after time, than is possible with
nonsense material. Continued reading of nonsense material degenerates
into a mere droning, while in repeatedly reading meaningful material the
learner who is keenly interested in mastering the passage is sure to keep his
mind ahead of his eyes to some extent, so that his reading becomes half
recitation, after all.
Whence comes the advantage of recitation? It has a twofold advantage: it
is more stimulating, and it is more satisfying. When you know you are
going to attempt recitation at once, you are stimulated to observe positions,
peculiarities, relationships, and meanings, and thus your study {341} goes
on at a higher level than when the test of your knowledge is still far away,
with many readings still to come. You are also stimulated to manipulate the
material, by way of grouping and rhythm.

CHAPTER XIV

318

On the side of satisfaction, recitation shows you what parts of the lesson
you have mastered and gives you the glow of increasing success. It shows
you exactly where you are failing and so stimulates to extra attention to
those parts of the lesson. It taps the instincts of exploration, manipulation,
and mastery much more effectively than continued re-reading of the same
lesson can do. The latter becomes very uninteresting, monotonous and
fatiguing.
Perhaps, after all, the greatest advantage of reciting is that it makes you
do, in learning, the very act that you have later to perform in the test; for
what you have finally to do is to recite the lesson without the book. When
reading, you are doing something different; and if it were altogether
different, it probably would not help you at all towards success in the test.
But since intelligent reading consists partly in anticipating and outlining as
you go, it is a sort of half recitation, it is halfway doing what you are trying
to learn to do. Memorizing consists in performing an act, now, with
assistance, that you later wish to perform without assistance; and recitation
first stimulates you to fashion the act conformably to the object in view, and
then exercises you in performing that act.
Spaced and unspaced repetition.
Another question on the economical management of memorizing: Is it
better to keep steadily going through the lesson till you have it, or to go
through it at intervals? If you were allowed a certain time, and no more, in
which to prepare for examination on a certain memory lesson, how could
the study time be best distributed? This question also has received a very
definite answer.
{342}
Spaced repetitions are more effective than unspaced. In an experiment of
Piéron, a practised subject went through a list of twenty numbers with an
interval of only thirty seconds between readings, and needed eleven
readings to master the list. But a similar list, with five-minute intervals, was
mastered in six readings; and the number of readings went down to five

CHAPTER XIV

319

with an interval of ten minutes, and remained the same for longer intervals
up to two days. With this particular sort of lesson, then, ten minutes was a
long enough interval, and two days not too long, to give the greatest
economy of time spent in actual study.
In a somewhat different experiment in another laboratory, lists of nonsense
syllables were studied either two, four, or eight times in immediate
succession, and this was repeated each day till a total of twenty-four
readings had been given to each list; then, one day after the last reading of
each list, the subjects were tested as to their memory of it. The result
appears in the adjoining table.
EFFECT OF SPACED STUDY ON ECONOMY OF MEMORIZING (From
Jost)
Distribution of the 24 readings Total score Total score of Mr. B. of Mr. M.
8 readings a day for 3 days 18 7
6 readings a day for 4 days 39 31
2 readings a day for 12 days 58 55
The widest distribution gave the best score. Undoubtedly, then, if you had
to memorize a poem or speech, you would get better value for time spent if
you read it once or twice at a time, with intervals of perhaps a day, than if
you attempted to learn it at one continuous sitting. What exact spacing
would give the very greatest economy would depend on the length and
character of the lesson.
Spaced study also fixes the matter more durably. Every student knows that
continuous "cramming" just before an {343} examination, while it may
accomplish its immediate purpose, accomplishes little for permanent
knowledge.
When we say that spaced repetitions give best results in memorizing, that
does not mean that study generally should be in short periods with intervals

CHAPTER XIV

320

of rest; it says nothing one way or the other on that question. The
probability is, since most students take a certain time to get well "warmed
up" to study, that fairly long periods of consecutive study would yield
larger returns than the same amount of time divided into many short
periods. What we have been saying here is simply that repetition of the
same material fixes it better in memory, when an interval (not necessarily
an empty interval) elapses between the repetitions.
Whole versus part learning.
In memorizing a long lesson, is it more economical to divide it into parts,
and study each part by itself till mastered, or to keep the lesson entire and
always go through the whole thing? Most of us would probably guess that
study part by part would be better, but experimental results have usually
been in favor of study of the whole.
If you had to memorize 240 lines of a poem, you would certainly be inclined
to learn a part at a time; but notice the following experiment. A young man
took two passages of this length, both from the same poem, and studied one
by the whole method, the other by the part method, in sittings of about
thirty-five minutes each day. His results appear in the table.
LEARNING PASSAGES OF 240 LINES, BY WHOLE AND PART
METHODS (Pyle and Snyder)
Method of study Number of days Total number of required minutes
required
30 lines memorized per day, then whole reviewed till it could be recited 12
431
3 readings of whole per day till it could be recited 10 348
{344}

CHAPTER XIV

321

Here there was an economy of eighty-three minutes, or nearly twenty per
cent., by using the whole method as against the part method. Similar
experiments have regularly given the same general result.
However, the matter is not quite so simple, as, under certain conditions, the
results tend the other way. Let us consider a very different type of learning
test. A "pencil maze", consisting of passages or grooves to be traced out
with a pencil, while the whole thing was concealed from the subject by a
screen, was so arranged that it could be divided into four parts and each
part learned separately. Four squads of learners were used. Squads A and
B learned the maze as a whole, squads C and D part by part. Squads A and
C learned by spaced trials, two trials per day. Squad B learned the whole
thing at one sitting; while squad D, which came off best of all, learned one
part a day for four days, and on the fifth day learned to put the parts
together. The results appear in the adjoining table, which shows the
average time required to master the maze by each of the four methods.
PART AND WHOLE LEARNING, SPACED AND UNSPACED, IN THE
PENCIL MAZE (From Pechstein)
Spaced trials Unspaced trials
Whole learning A 641 seconds B 1250 seconds
Part learning C 1220 seconds D 538 seconds
When the trials were spaced, the whole method was much the better; but
when the trials were bunched, the part method was much the better; and,
on the whole, the unspaced part learning was the best of all. Thus the result
stands in apparent contradiction with two accepted laws: that of the
advantage of spaced learning, and that of the advantage of whole learning.
This contradiction warns us not to accept the "laws" {345} too blindly, but
rather to analyze out the factors of advantage in each method, and govern
ourselves accordingly. Among the factors involved are the following four:

CHAPTER XIV

322

(1) The factor of interest, confidence and visible accomplishment--the
emotional factor, we might call it. This is on the side of part learning,
especially with beginners, who soon feel out of their depth when wading
into a long lesson, and lose hope of ever learning it in this way. This factor
is also largely on the side of unspaced as against spaced learning, when the
part studied is of moderate length and when there are recitations to keep up
the interest; for when the learner sees he is getting ahead, he would rather
keep right on than wait for another day to finish. To have a task that you
can hope to accomplish at once, and to attack it with the intention of
mastering it at once, is very stimulating.
(2) The factor of recency, of "striking while the iron is hot". When an act
has just been successfully performed it can easily be repeated, and when a
fact has just been observed it can readily be put to use. This factor is
clearly on the side of unspaced learning; and it is also on the side of part
learning, since by the time you have gone through the whole long lesson
and got back to where you are now, the recency value of what you have just
now accomplished will have evaporated.
(3) The factor of meaning, outlining and broad relationships. This is on the
side of whole learning, for it is when you are going through the whole that
you catch its general drift, and see the connections of the several parts and
their places in the whole. This factor is so important as to outweigh the
preceding two in many cases, especially with experienced learners dealing
with meaningful material. Even if you should prefer the part method, you
would be wise to begin by a careful survey of the whole.
{346}
(4) The factor of permanency. This is something "physiological", and it is
on the side of spaced learning. The muscles profit more by exercise with
intervals of rest than by a large amount of continuous exercise, and no
athlete would think for a moment of training for a contest of strength by
"cramming" for it. Apparently the neurones obey the same law as the
muscles, and for that reason spaced learning gives more durable results
than unspaced.

CHAPTER XIV

323

Unintentional Learning
What we have been examining is intentional memorizing, with the "will to
learn" strongly in the game. The assertion has sometimes been made that
the will to learn is necessary if any learning is to be accomplished. We must
look into this matter, for it has an important bearing on the whole question
of the process of learning.
There is a famous incident that occurred in a Swiss psychological
laboratory, when a foreign student was supposed to be memorizing a list of
nonsense syllables. After the list had been passed before him many times
without his giving the expected signal that he was ready to recite, the
experimenter remarked that he seemed to be having trouble in memorizing
the syllables. "Oh! I didn't understand that I was to learn them", he said,
and it was found that, in fact, he had made almost no progress towards
learning the list. He had been observing the separate syllables, with no
effort to connect them into a series.
Another incident: subjects were put repeatedly through a "color naming
test", which consisted of five colors repeated in irregular order, the object
being to name the one hundred bits of color as rapidly as possible. After the
subjects had been through this test over two hundred times, you would think
they could recite it from memory; but not {347} at all! They had very little
memory of the order of the bits of color. Their efforts had been wholly
concentrated upon naming the bits as seen, and not in connecting them into
a series that could be remembered.
The experiment described a few pages back on "paired associates" is
another case in point. The subjects memorized the pairs, but made no effort
to connect the pairs in order, and consequently were not able later to
remember the order of the pairs.
Many somewhat similar experiments have been performed, with the object
of measuring the reliability of the testimony of eye-witnesses; and it has
been found that testimony is very unreliable except for facts that were
specifically noted at the time. Enact a little scene before a class of students

CHAPTER XIV

324

who do not suspect that their memory of the affair is later to be tested, and
you will find that their memory for many facts that were before their eyes is
hazy, absent, or positively false.
These facts all emphasize the importance of the will to learn. But let us
consider another line of facts. An event occurs before our eyes, and we do
notice certain facts about it, not with any intention of remembering them
later, but simply because they arouse our interest; later, we recall such
facts with great clearness and certainty. Or, we hear a tune time after time,
and gradually come to be able to sing it ourselves, without ever having
attempted to memorize it. Practically all that the child learns in the first
few years of his life, he learns without any "will to learn".
What is the difference between the case where the will to learn is
necessary, and the case where it is unnecessary? The difference is that in
the one case we observe facts for the purpose of committing them to
memory, and in the other case we observe the facts without any such
intention. In both cases we remember what we have definitely observed,
{348} and fail to remember what we have not observed. Sometimes, to be
sure, it is not so much observation as doing that is operative. We may make
a certain reaction with the object of learning it so as to make it later, or we
may make the reaction for some other reason; but in either case we learn it.
What is essential, then, is not the will to learn, but the doing and observing.
The will to learn is sometimes important, as a directive tendency, to steer
doing and observing into channels relevant to the particular memory task
that we need to perform. But committing to memory seems not to be any
special form of activity; rather, it consists of reactions that also occur
without any view to future remembering. Not only do we learn by doing
and observing, but doing and observing are learning.
Retention
We come now to the second of our four main problems, and ask how we
retain, or carry around inside of us, what we have learned. The answer is,
not by any process or activity. Retention is a resting state, in which a

CHAPTER XIV

325

learned reaction remains until the stimulus arrives that can arouse it again.
We carry around with us, not the reaction, but the machinery for making
the reaction.
Consider, for example, the retention of motor skill. A boy who has learned
to turn a handspring does not have to keep doing it all the time in order to
retain it. He may keep himself in better form by reviewing the performance
occasionally, but he retains the skill even while eating and sleeping. The
same can be said of the retention of the multiplication table, or of a poem,
or of knowledge of any kind. The machinery that is retained consists very
largely in brain connections. Connections formed in the process of {349}
learning remain behind in a resting condition till again aroused to activity
by some appropriate stimulus.
But the machinery developed in the process of learning is subject to the
wasting effects of time. It is subject to the law of "atrophy through disuse".
Just as a muscle, brought by exercise into the pink of condition, and then
left long inactive, grows weak and small, so it is with the brain connections
formed in learning. With prolongation of the condition of rest, the
machinery is less and less able to function, till finally all retention of a
once-learned reaction may be lost.
But is anything once learned ever completely forgotten and lost? Some say
no, being strongly impressed by cases of recovery of memories that were
thought to be altogether gone. Childhood experiences that were supposed
to be completely forgotten, and that could not at first be recalled at all,
have sometimes been recovered after a long and devious search. Sometimes
a hypnotized person remembers facts that he could not get at in the waking
state. Persons in a fever have been known to speak a language heard in
childhood, but so long disused as to be completely inaccessible in the
normal state. Such facts have been generalized into the extravagant
statement that nothing once known is ever forgotten. For it is an
extravagant statement. It would mean that all the lessons you had ever
learned could still be recited, if only the right stimulus could be found to
arouse them; it would mean that all the lectures you ever heard (and
attended to) are still retained, that all the stories you ever read are still

CHAPTER XIV

326

retained, that all the faces you ever noticed are still retained, that all the
scenes and happenings that ever got your attention could still be revived if
only the right means were taken to revive them. There is no evidence for
any such extreme view.
The modern, scientific study of this matter began with {350} recognizing
the fact that there are degrees of retention, ranging all the way from one
hundred per cent, to zero, and with the invention of methods of measuring
retention. Suppose you have memorized a list of twenty numbers some time
ago, and kept a record of the time you then took to learn it; since when you
have not thought of it again.
[Illustration: Fig. 53.--(From Ebbinghaus.) The curve of forgetting. The
curve sinks at first rapidly, and then slowly, from the 100 per cent line
towards the zero line, 100 per cent. here meaning perfect retention, and 0
no retention.]
On attempting now to recite it, you make no headway and are inclined to
think you have entirely forgotten it. But, finding the list again, you relearn
it, and probably find that your time for relearning is less than the original
learning time--unless the lapse of time has run into months. Now
consider--if no time at all were needed for relearning, because the list
could be recited easily without, your retention would be one hundred per
cent. If, on the contrary, it took you just as long now to relearn as it did
originally to learn, the retention would be zero. If it takes you now
two-thirds as long to relearn as it originally took to learn, then {351}
one-third of the work originally done on the list does not have to be done
over, and this saving is the measure of retention.
By the use of this method, the curve of retention, or curve of forgetting, as it
is also called, has been determined. It is a curve that first goes down
steeply, and then more and more gradually, till it approximates to zero;
which means that the loss of what has been learned proceeds rapidly at
first and then more and more slowly.

CHAPTER XIV

327

The curve of forgetting can be determined by other methods besides the
saving method--by the recall method or by the recognition method; and
data obtained by these methods are given in the adjoining tables. It will be
seen that the different methods agree in showing a curve that falls off more
rapidly at first than later. More is lost in the first hour than in the second
hour, and more in the first week than in the second week. Few of the
experiments have been continued long enough to bring the curve actually to
the zero line, but it has come very close to that line in tests conducted after
an interval of two to four months.
PER CENT. OF WORDS RECOGNIZED AT DIFFERENT INTERVALS
AFTER BEING SEEN (From Strong)
Interval between Per cent. recognized with exposure and test certainty and
correctness
15 secs. 84
5 min. 73
15 min. 62
30 min. 58
1 hour 56
2 hours 50
4 hours 47
8 hours 40
12 hours 38
1 day 29

CHAPTER XIV

328

2 days 24
4 days 19
7 days 10
The subject read a list of 20 disconnected words once through, giving
careful attention to each word. Immediately at the close of the reading he
performed an example in mental arithmetic, to prevent his reviewing the
list of words mentally. After an interval, he was shown these {352} twenty
words mixed with twenty others, and had to pick out those he surely
recognized as having been shown before. Many lists were used, for testing
after the different intervals. Five adult subjects took part in the experiment,
and in all 15 lists were used with each interval; the per cents. given in the
table are the averages for the 15 lists.
THE PER CENT. OF ERROR IN RECALLING DETAILS OF A PICTURE
AFTER DIFFERENT INTERVALS OF TIME (From Dallenbach)
Time of test Per cent, of error Per cent of error in spontaneous in
answering recall questions regarding the picture
Immediately after exposure 10 14
After 5 days 14 18
After 15 days 18 20
After 46 days 22 22
The picture was placed in the subject's hands, and he examined it for one
minute, at the end of which time he wrote down as complete a description
of the picture as possible, and then answered a set of sixty questions
covering all the features of the picture. After five days he was retested in
the same way, and again after fifteen days, etc. In one respect this is not a
typical memory experiment, since the test after five days would revive the

CHAPTER XIV

329

subject's memory of the picture and slacken the progress of forgetting. The
experiment corresponds more closely to the conditions of ordinary life,
when we do recall a scene at intervals; or it corresponds to the conditions
surrounding the eye-witness of a crime, who must testify regarding it, time
after time, before police, lawyers and juries. However, the subjects in this
experiment realized at the time that they were to be examined later, and
studied the picture more carefully than the eye-witness of a crime would
study the event occurring before his eyes; so that the per cent. of error was
smaller here than can be expected in the courtroom.
It must be understood that this classical curve of forgetting only holds
good, strictly, for material that has barely been learned. Reactions that
have been drilled in thoroughly and repeatedly fall off very slowly at first,
and the further course of the curve of forgetting has not been accurately
followed in their case. A typist who had spent perhaps two hundred hours
in drill, and then dropped typewriting for a year, recovered the lost ground
in less than an hour of fresh practice, so that the retention, as measured by
the saving method, was over ninety-nine per cent.
Somewhat different from the matter of the curve of forgetting is the
question of the rate of forgetting, as {353} dependent on various conditions.
The rate of forgetting depends, first, on the thoroughness of the learning, as
we have just seen. It depends on the kind of material learned, being very
much slower for meaningful than for nonsense material, though both have
been learned equally well. Barely learned nonsense material is almost
entirely gone by the end of four months, but stanzas of poetry, just barely
learned, have shown a perceptible retention after twenty years.
Very fortunately, the principles of economy of memorizing hold good also
for retention. Forgetting is slower when relationships and connections have
been found in the material than when the learning has been by rote.
Forgetting is slower after active recitation than when the more passive,
receptive method of study has been employed. Forgetting is slower after
spaced than after unspaced study, and slower after whole learning than
after part learning.

CHAPTER XIV

330

An old saying has it that quick learning means quick forgetting, and that
quick learners are quick forgetters. Experiment does not wholly bear this
out. A lesson that is learned quickly because it is clearly understood is
better retained than one which is imperfectly understood and therefore
slowly learned; and a learner who learns quickly because he is on the alert
for significant facts and connections retains better than a learner who is
slow from lack of such alertness. The wider awake the learner, the quicker
will be his learning and the slower his subsequent forgetting; so that one is
often tempted to admonish a certain type of studious but easy-going person,
"for goodness' sake not to dawdle over his lessons", with any idea that the
more time he spends with them the longer he will remember them. More
gas! High pressure gives the biggest results, provided only it is directed
into high-level observation, and does not simply generate fear and worry
and a rattle-brained frenzy of rote learning.
{354}
Recall
Having committed something to memory, how do we get it back when we
want it? To judge from such simple cases as the animal's performance of a
previously learned reaction, all that is necessary is a stimulus previously
linked with the response. How, for example, shall we get the cat to turn the
door-button, this being an act that the cat has previously learned? Why, we
put the cat into the same cage, i.e., we supply the stimulus that has
previously given the reaction, and trust to it to give the same reaction
again. The learning process has attached this reaction to this stimulus.
Now can we say the same regarding material committed to memory by the
human subject? Is recall a species of learned reaction that needs only the
linked stimulus to arouse it?
If you have learned and still retain a list of numbers or syllables, you can
recite it on thinking of it, on hearing words that identify it in your mind, or
on being given the first few items in the list as a start. The act of reciting
the list became linked, during the learning, with the thought of the list, with
words signifying this particular list, and with the first items of the list;

CHAPTER XIV

331

therefore, these stimuli can now arouse the reaction of reciting the list. As
you advance into the list, reciting it, the parts already recited act as stimuli
to keep you going forward. In the same way, if you have memorized
Hamlet's soliloquy, this title serves as the stimulus to make you recall the
beginning of the speech and that in turn calls up the next part and so on;
or, if you have analyzed the speech into an outline, the title calls up the
outline and the outline acts as the stimulus to call up the several parts that
were attached to the outline in the process of memorization. When one idea
calls up another, the first acts as a stimulus and the second is a {355}
response previously attached to this stimulus. In general, then, recall is a
learned response to a stimulus.
There is an exceptional case, where recall seems to occur without any
stimulus. This form of recall goes by the name of perseveration, and a good
instance of it is the "running of a tune in the head", shortly after it has been
heard. Another instance is the vivid flashing of scenes of the day before the
"mind's eye" as one lies in bed before going to sleep. It appears as if the
sights or sounds came up of themselves and without any stimulus. Possibly
there is some vague stimulus which cannot itself be detected. Only a slight
stimulus would be needed, because these recent and vivid experiences are
so easily aroused.
Difficulties in recall.
Sometimes recall fails to materialize when we wish it and have good reason
for expecting it. We know this person's name, as is proved by the fact that
we later recall it, but at the moment we cannot bring it up. We know the
answer to this examination question, but in the heat of the examination we
give the wrong answer, though afterwards the right answer comes to mind.
This seldom happens with thoroughly learned facts, but frequently with
facts that are moderately well known. Some sort of inhibition or
interference blocks recall.
One type of interference is emotional. Fear may paralyze recall. Anxious
self-consciousness, or stage fright, has prevented the recall of many a
well-learned speech, and interfered with the skilful performance of many a

CHAPTER XIV

332

well-trained act.
Distraction is an interference, since it keeps the stimulus from exerting its
full effect. Sometimes the stimulus that is present has been linked with two
or more responses, and these get in each other's way; as you will
sometimes hear a speaker hesitate and become confused from having two
ways {356} of expressing the same thought occur to him at almost the same
instant.
Helps in recall.
There are no sure rules for avoiding these intricate interferences; and, in
general, recall being a much less manageable process than memorizing, we
do not have anything like the same mass of practical information regarding
it. One or two suggestions have some value, however.
(1) Give the stimulus a good chance. Look squarely at the person whose
name you wish to recall, avoiding doubt as to your ability to recall it; for
doubt is itself a distraction. Put yourself back into the time when you
formerly used this person's name. In extemporaneous speaking, go ahead
confidently, avoid worry and self-consciousness, and, full of your subject,
trust to your ideas to recall the words as needed. Once carried away with
his subject, a speaker may surprise himself by his own fluency.
(2) Drop the matter for a while, and come back to it afresh. Sometimes,
when you cannot at once recall a name, it does no good to keep doggedly
hunting, while half an hour later you get it without the least trouble. The
explanation of this curious phenomenon is found in interference and the
dying out of interference. At your first attempt to recall the name, you
simply got on the wrong track, and thus gave this wrong track the
"recency" advantage over the right track; but this temporary advantage
fades out rapidly with rest and leaves the advantage with the track most
used in the past.
The rule to drop a matter when baffled and confused, and take it up again
when fresh, can be used in more complex cases than hunting for a name.

CHAPTER XIV

333

When, in trying to solve any sort of problem, you find yourself in a rut,
about the only escape is to back off, rest up, and make an entirely fresh
start.
{357}
Recognition
The fourth question propounded at the beginning of the chapter, as to how
we can know that the fact now recalled is what we formerly committed to
memory and now wish to recall, is part of the larger question of how we
recognize. What we recognize includes not only facts recalled, but also
facts not recalled but presented a second time to the senses. Recognition of
objects seen, heard, touched, etc., is the most rudimentary form of memory.
The baby shows signs of recognizing persons and things before he shows
signs of recall. A little later, he recognizes and understands words before
he begins to speak (recall) them; and everybody's vocabulary of recognized
words remains much greater than his speaking vocabulary. We recognize
faces that we could not recall, and names that we could not recall. In short,
recognition is easier than recall.
Consequently any theory of recognition that makes it depend on recall can
scarcely be correct. One such theory held that an object is recognized by
recalling its original setting in past experience; an odor would be
recognized by virtue of recalling the circumstances under which it was
formerly experienced. Now sometimes it does happen that an odor which
seems familiar, but cannot be identified, calls up a past experience and thus
is fully recognized; but such "indirect recognition" is not the usual thing,
for direct recognition commonly takes place before recall of the past
experience has time to occur. You see a person, and know him at once,
though it may require some moments before you can recall where and when
you have seen him before.
Recognition may be more or less complete. At its minimum, it is simply a
"feeling of familiarity" with the object; at its maximum it is locating the
object precisely in your autobiography. You see a man, and say, "He looks

CHAPTER XIV

334

{358} familiar, I must have seen him somewhere", and then it dawns on
you, "Oh! yes, now I know exactly who he is; he is the man who . . ."
Between these extremes lie various degrees of recognition. This man seems
to be some one seen recently, or a long, long time ago, or at the seashore,
or as a salesman in a store; or as some one you looked up to, or felt
hostility towards, or were amused at; and often these impressions turn out
to be correct, when you succeed in fully recognizing the person. These
impressions resemble the first signs of recognition in the baby's behavior;
you say that the baby remembers people because he smiles at one who has
pleased him before, and shrinks from one who has displeased him.
Recognition described in terms of stimulus and response.
Recognition is a form of learned response, depending on previous reaction
to the object recognized. To recognize an object is to respond to it as we
responded before--except for the feeling of familiarity, which could not
occur the first time we saw the object. But notice this: though the object is
the same identical object it was before, it may have changed somewhat. At
least, its setting is different; this is a different time and perhaps a different
place, and the circumstances are bound to be more or less different. In
spite of this difference in the situation, we make the same response as
before.
Now, the response we made to the object in its original setting was a
response to the whole situation, object plus setting; our response to the
object was colored by its setting. When we now recognize the object, we
make the same response to the object in a different setting; the response
originally called out by the object plus its setting is now aroused by the
object alone. Consequently we have an uneasy feeling of responding to a
situation that is not present. {359} This uneasy feeling is the feeling of
familiarity in its more haunting and "intriguing" form.
We see some one who seems familiar and who arouses a hostile attitude in
us that is not accounted for in the least by his present actions. We have this
uneasy feeling of responding to a situation that is not present, and cannot
rest till we have identified the person and justified our hostile attitude.

CHAPTER XIV

335

Or, we see some one who makes us feel as if we had had dealings with him
before in a store or postoffice where he must have served us; we find
ourselves taking the attitude towards him that is appropriate towards such
a functionary, though there is nothing in his present setting to arouse such
an attitude. Or, we see some one in the city streets who seems to put us
back into the atmosphere of a vacation at the seashore, and by searching
our memory we finally locate him as an individual we saw at such and such
a resort. At other times, the feeling of familiarity is rather colorless,
because the original situation in which the person was encountered was
colorless; but we still have the feeling of responding to something that is
not present. We make, or start to make, the same response to the person
that we originally made to him plus his setting, and this response to
something that is not there gives the feeling of familiarity.
When we see the same person time after time in the same setting, as when
we go into the same store every morning and buy a paper from the same
man, we cease to have any strong feeling of familiarity at sight of him, the
reason being that we are always responding to him in the same setting, and
consequently have no feeling of responding to something that is not there.
But if we see this same individual in a totally different place, he may give
us a queer feeling of familiarity. When we see the same person time after
time {360} in various settings, we end by separating him from his
surroundings and responding to him alone, and therefore the familiarity
feeling disappears.
Complete recognition, or "placing" the object, involves something more
than these feelings and rudimentary reactions. It involves the recall of a
context or scheme of events, and a fitting of the object into the scheme.
Memory Training
The important question whether memory can be improved by any form of
training breaks up, in the light of our previous analysis, into the four
questions, whether memorizing can be improved, whether the power of
retention can be improved, whether recall can be improved, and whether
recognition can be improved. As to recognition, it is difficult to imagine

CHAPTER XIV

336

how to train it; the process is so elusive and so direct. It has been found,
however, that practice in recognizing a certain class of objects improves
one's standards of judgment as to whether a feeling of familiarity is reliable
or not; it enables one to distinguish between feelings that have given
correct recognitions and the vaguer feelings that often lead one astray.
As to recall, certain hints were given above as to the efficient management
of this process, and probably practice in recalling a certain sort of facts,
checked up by results, would lead to improvement.
As to retention, since this is not a performance but a resting state, how
could we possibly go about to effect an improvement? One individual's
brain is, to be sure, more retentive than another's; but that seems a native
trait, not to be altered by training.
On the other hand, the process of committing to memory, being a
straightforward and controllable activity, is {361} exceedingly susceptible
to training, and it is there, for the most part, that memory training should
be concentrated in order to yield results. It does yield marked results. In the
laboratory, the beginner in learning lists of nonsense syllables makes poor
work of it. He is emotionally wrought up and uncertain of himself, goes to
work in a random way (like any beginner), perhaps tries to learn by pure
rote or else attempts to use devices that are ill-adapted to the material, and
has a slow and tedious job of it. With practice in learning this sort of
material, he learns to observe suitable groupings and relationships,
becomes sure of himself and free from the distraction of emotional
disturbance, and may even come to enjoy the work. Certainly he improves
greatly in speed of memorizing nonsense syllables. If, instead, he practises
on Spenser's "Faery Queen", he improves in that, and may cut down his
time for memorizing a twelve-line stanza from fifteen minutes to five. This
improvement is due to the subject's finding out ways of tackling this
particular sort of material. He gets used to Spenser's style and range of
ideas. And so it is with any kind of material; practice in memorizing it
brings great improvement in memorizing that particular material.

CHAPTER XIV

337

Whether practice with one sort of material brings skill that can be
"transferred", or carried over to a second kind of material, is quite another
question. Usually the amount of transfer is small compared with the
improvement gained in handling the first material, or compared with the
improvement that will result from specific training with the second kind.
What skill is transferred consists partly of the habit of looking for
groupings and relationships, and partly in the confidence in one's own
ability as a memorizer. It is really worth while taking part in a memory
experiment, just to know what you can accomplish after a little training.
Most persons who complain of poor memory would be {362} convinced by
such an experiment that their memory was fundamentally sound. But these
laboratory exercises do not pretend to develop any general "power of
memory", and the much advertised systems of memory training are no more
justified in such a claim. What is developed, in both cases, is skill in
memorizing certain kinds of material so as to pass certain forms of memory
test.
One who suffers from poor memory for any special material, as names,
errands, or engagements, probably is not going to work right in committing
the facts to memory; and if he gives special attention to this particular
matter, keeping tab on himself to see whether he improves, he is likely to
find better ways of fixing the facts and to make great improvement. It was
said of a certain college president of the older day that he never failed to
call a student or alumnus by name, after he had once met the man. How did
he do it? He had the custom of calling each man in the freshman class into
his office for a private interview, during which, besides fatherly advice, he
asked the man personal questions and studied him intently. He was
interested in the man, he formed a clear impression of his personality, and
to that personality he carefully attached the name. Undoubtedly this able
scholar was possessed of an unusually retentive memory; but his memory
for names depended largely on his method of committing them to memory.
Contrast this with the casual procedure of most of us on being introduced
to a person. Perhaps we scarcely notice the name, and make no effort to
attach the name to the personality. To have a good memory for names, one
needs to give attention and practice to this specific matter. It is the same

CHAPTER XIV

338

with memory for errands; it can be specifically trained. Perhaps the best
general hint here is to connect the errand beforehand in your mind with the
{363} place where you should think, during the day, to do the errand.
Often some little mnemonic system will help in remembering disconnected
facts, but such devices have only a limited field of application and do not in
the least improve the general power of memory. Some speakers, in planning
out a speech, locate each successive "point" in a corner of the hall, or in a
room of their own house; and when they have finished one point, look into
the next corner, or think of the next room, and find the following point
there. It would seem that a well-ordered discourse should supply its own
logical cues so that such artificial aids would be unnecessary.
In training the memory for the significant facts that constitute the
individual's knowledge of his business in life, the best rule is to systematize
and interrelate the facts into a coherent whole. Thus, a bigger and stronger
stimulus is provided for the recall of any item. This, along with the
principles of "economy" in memorizing, is the best suggestion that
psychology has to make towards memory improvement.
{364}
EXERCISES
1. In outlining the chapter, regroup the material so as to separate the
practical applications from the description of memory processes. This gives
you two main heads: A. Memory processes, and B. The training and
management of memory. Each of these main heads should be divided into
four sub-heads: Memorizing, retention, etc., and the information contained
in the chapter grouped under these sub-heads.
2. Disorders of memory can be classified under the four heads of disorders
of learning, of retention, of recall and of recognition. Where would you
place each of the following?

CHAPTER XIV

339

(a) Aphasia, where, through brain injury, the subject's vocabulary is very
much reduced.
(b) The condition of the very old person, who cannot remember what has
happened during the day, though he still remembers experiences of his
youth.
(c) The "feeling of having been there before", in which you have a weird
impression that what is happening now has happened in just the same way
before, as if events were simply repeating themselves.
(d) The loss of memory which sometimes occurs after a physical or
emotional shock, or after a fever, and which passes away after a time.
3. How fully can you recall what happened on some interesting occasion
when you were a child of 5-8 years? Dwell on the experience, and see
whether you get back more than at first seemed possible. Try the same with
an experience of five years ago.
4. If a student came to you for advice, complaining of poor memory, and
said that though he put hours and hours on a lesson and read it over many
times, still he failed on it, what questions would you ask regarding his
method of study, and what suggestions would you offer?
5. An experiment on memorising lists of numbers. Prepare several lists of
20 digits, and shuffle them; draw out one and take your time for learning it
to the point of perfect recitation. Write an introspective account of the
process. Repeat with a second list
6. An experiment in memorizing word-pairs. Prepare 20 pairs of words as
follows: take 20 cards or slips of paper, and write a different word on each.
Then turn them over, shuffle, and write another word on the back of each.
Thus, though you may know what words you have written, you do not how
how they are paired; and now your job is to learn the pairs. Note starting
time, take the first card and look at both {365} sides, and study the pair of
words on this card for about 5 seconds, passing then to the second card,

CHAPTER XIV

340

and so on through the pack. Shuffle the pack, take the top card and give
yourself about 5 seconds to recall the word on the reverse, then turning the
card over and reading it. Proceed in this way through the pack, shuffle
again, and repeat. Continue thus till you score 100 per cent. Note total time
required, and report on process of memorizing.
7. Memorizing a series of related words. Prepare a list of 40 words, as
follows: first write the numbers 1 to 40 in a column; then write any word
for No. 1; for No. 2, write some word closely related to No. 1; for No. 3
some word closely related to No. 2; and so on. Your list, for example, might
begin like this: house, roof, chimney, soot, fire, coal, mine, miner, strike,
arbitration, etc. Having finished writing your list, cover it and see how
much of it you can recite without further study, and how long it takes you to
complete the memorizing. Explain the results obtained.
8. Plot the curve of forgetting from the following data, which give the per
cent, of retention of stanzas of a poem at different intervals after the end of
memorizing.
after 1 day 79% after 2 days 67% after 6 days 42% after 14 days 30% after
30 days 24%
REFERENCES
Ebbinghaus, On Memory, 1885, translated by Ruger and Bussenius, 1918.
This is the pioneer experimental study of memory, and is still worth
reading, and is not specially hard reading.
James's chapter on Memory, in Vol. I of his Principles of Psychology, 1890,
is still one of the best references, and contains some important remarks on
the improvement of memory.
Of the numerous special studies on memory, mention may be made of that
by Arthur I. Gates, Recitation as a Factor in Memorizing, 1917, which, on
pp. 65-104, gives a valuable account of the various devices used by one
who is memorizing.

CHAPTER XIV

341

For the psychology of testimony, see G. M. Whipple's article on "The
Obtaining of Information: Psychology of Observation and Report", in the
Psychological Bulletin for 1918, Vol. 15, pp. 217-248, especially pp.
233-248. See also a popularly written account of the matter by
Münsterberg, in On the Witness Stand, 1908, pp. 15-69.
{366}

CHAPTER XV

342

CHAPTER XV
ASSOCIATION AND MENTAL IMAGERY
SOMETHING ABOUT THINKING AS RELATED TO MEMORY
Memory plays a part, not only in "memory work", and not only in
remembering particular past experiences, but in all sorts of thinking.
Recall furnishes the raw material for thought. A large share of any one's
daily work, whether it be manual or mental, depends on the recall of
previously learned reactions. Most of the time, though we are not exactly
trying to remember facts committed to memory, we are recalling what we
have previously learned, and utilizing the recalled material for our present
purposes. For example, in conversation we recall words to express our
meaning, and we recall the meanings of the words we hear. In adding a
column of figures, we recall the sums of the numbers. In cooking a meal, we
recall the ingredients of the dish we wish to prepare, and the location of the
various materials and utensils required for our purpose. In planning a trip,
we recall places and routes. Any sort of problem is solved by means of
recalled facts put together in a new way. A writer in constructing a story
puts together facts that he has previously noted, and any work of the
imagination consists of materials recalled from past experience and now
built into a new composition.
What Can Be Recalled
If recall is so important in thinking and acting, it is worth while to make a
survey of the materials that recall {367} furnishes. In general, using the
term "recall" rather broadly, we say that any previously learned reaction
may be recalled. Writing movements may be said to be recalled when we
write, and speech movements when we speak. "Higher units", like the word
habits and phrase habits of the telegrapher and typist, are in a broad sense
recalled whenever they are used. The typist does not by any means recall
the experience of learning a higher unit, but he calls into action again the
response that he has learned to make. In the same way, the word habits and
phrase habits of vocal speech are called into action, i.e., recalled,

CHAPTER XV

343

whenever we speak.
Besides these motor reactions, tendencies to reaction can be recalled. The
attitude of hostility that may have become habitual in us towards a certain
person, or towards a certain task, is called into activity at the mention of
that person or task. The acquired interest in architecture that we may have
formed by reading or travel is revived by the sight of an ambitious group of
buildings. A slumbering purpose may be recalled into activity by some
relevant stimulus.
Observed facts can be recalled, and this is the typically human form of
recall. In animals, we see the recall of tendencies and of learned
movements, but no clear evidence of the recall of observed facts. To be
recalled with certainty, a fact must have been definitely noted when it was
before us. If we have definitely noted the color of a person's eyes, we are in
a position to testify that his eyes are brown, for example; otherwise, we
may say that we think probably his eyes are brown; because we have
certainly noticed that he is dark, and the dark eyes fit best into this total
impression.
We say that a fact is recalled when we think of it without its being present
to the senses. While the original {368} observation of the fact was a
response to a sensory stimulus, the recall of it is a response to some other
stimulus, some "substitute stimulus". When John is before me, I observe
that his eyes are brown in response to a visual stimulus; but I later recall
this fact in response simply to the name "John", or in response to the
question as to what is the color of John's eyes. I see what a square is by
seeing squares and handling them, and later I get this idea simply in
response to the word "square" in conversation or reading.
Memory Images
Now, can sensations be recalled, can they be aroused except by their
natural sensory stimuli? Can you recall the color blue, or the sound of a
bugle, or the odor of camphor, or the feel of a lump of ice held in the hand?
Almost every one will reply "Yes" to some at least of these questions. One

CHAPTER XV

344

may have a vivid picture of a scene before the "mind's eye", and another a
realistic sound in the "mind's ear", and they may report that the recalled
experience seems essentially the same as the original sensation. Therefore,
sensory reactions are no exception to the rule of recall by a substitute
stimulus.
A sensation or complex of sensations recalled by a substitute stimulus is
called a "mental image" or a "memory image".
Individuals seem to differ in the vividness or realism of their memory
images--the likeness of the image to an actual sensation--more than in any
other respect. Galton, in taking a sort of census of mental imagery, asked
many persons to call up the appearance of their breakfast table as they had
sat down to it that morning, and to observe how lifelike the image was, how
complete, how adequate in respect to color, how steady and lasting, and to
compare {369} the image in these respects with the sensory experience
aroused by the actual presence of the scene. Some individuals reported that
the image was "in all respects the same as an original sensation", while
others denied that they got anything at all in the way of recalled sensation,
though they could perfectly well recall definite facts that they had observed
regarding the breakfast table. The majority of people gave testimony
intermediate between these extremes.
Individuals differ so much in this respect that they scarcely credit each
other's testimony. Some who had practically zero imagery held that the
"picture before the mind's eye" spoken of by the poets was a myth or mere
figure of speech; while those who were accustomed to vivid images could
not understand what the others could possibly mean by "remembering facts
about the breakfast table without having any image of it", and were
strongly tempted to accuse them of poor introspection, if not worse. It is
true that in attempting to study images, we have to depend altogether on
introspection, since no one can objectively observe another person's
memory image, and therefore we are exposed to all the unreliability of the
unchecked introspective method. But at the same time, when you
cross-question an individual whose testimony regarding his imagery is very
different from yours, you find him so consistent in his testimony and so sure

CHAPTER XV

345

he is right, that you are forced to conclude to a very real difference
between him and yourself. You are forced to conclude that the power of
recalling sensations varies from something like one hundred per cent, down
to practically zero.
Individuals may also differ in the kind of sensation that they can vividly
recall. Some who are poor at recalling visual sensations do have vivid
auditory images, and others who have little of either visual or auditory
imagery call up {370} kinesthetic sensations without difficulty. When this
was first discovered, a very pretty theory of "imagery types" was built upon
it. Any individual, so it was held, belonged to one or another type: either he
was a "visualist", thinking of everything as it appears to the eyes, or he was
an "audile", thinking of everything according to its sound, or he was a
"motor type", dealing wholly in kinesthetic imagery, or he might, in rare
cases, belong to the olfactory or gustatory or tactile type.
[Illustration: Fig. 54.--Individual differences in mental imagery. According
to the type theory, every individual has a place in one or another of the
distinct groups, visual, auditory, tactile, kinesthetic, or olfactory.
According to the facts, the majority, of individuals cluster in the middle
space, and form a single large group, though some few are extremely
visual, or auditory, etc., in their imagery. (Figure text: according to the
type theory, according to the facts)]
But the progress of investigation showed, first, that a "mixed type" must
also be admitted, to provide for individuals who easily called up images of
two or more different senses; and, later on, that the mixed type was the
most common. In fact, it is now known to be very unusual for an individual
to be confined to images of a single sense. Nearly every one gets visual
images more easily and frequently than those of any other sense, but nearly
every one has, from time to time, auditory, kinesthetic, tactile and olfactory
images. So that the "mixed type" is the only real type, the extreme visualist
or audile, etc., being exceptional and not typical.
{371}

CHAPTER XV

346

Limitations of Imagery
Recalled sensations are commonly inferior to their originals, both in the
enjoyment they afford and in the use that can be made of them. They are
likely to be inferior in several respects.
(1) An image has usually less color, or tone--less body, realism and full
sensory quality--than a sensation aroused by its appropriate peripheral
stimulus. While you may be able to call up a fairly good image of your
absent friend's face, the actual presence of your friend would be more
satisfactory, just as a sensory experience. You may be able to run over a
piece of music "in your head", and if your auditory imagery is strong you
may even run over an orchestral piece, and get the tone quality of the
various instruments; but, after all, such a mental concert is an imperfect
substitute for a real orchestra. You enjoy a real whiff of the sea more than
the best olfactory image you can summon. There is something lacking in
these recalled sensations, and the trouble seems to be that they are not
sensations enough; they lack sensory body.
(2) Images are apt to be sketchy and lacking in detail, and also narrow and
lacking in background.
(3) Images are apt to be unsteady and fleeting, as compared with actual
sensations. Where the peripheral stimulus, continuing, keeps the sensation
going, the substitute stimulus that recalls a sensation is not so effective in
this respect, any more than in giving body and detail. In all these respects,
an image is less enjoyable and satisfying than an actual sensation.
(4) On the more practical side, images are inferior to the actual presence
of an object, in that we cannot utilize the image as a source of new
information. {372} We cannot observe facts in the image of a thing that we
have not observed in the actual presence of the thing.
At one of the universities, there is a beautiful library building, with a row of
fine pillars across the front, and the students pass this building every day
and enjoy looking at it. It has long been a favorite experiment in the

CHAPTER XV

347

psychology classes at that university to have the students call up an image
of the library, and to have them state how clear their image is, how
complete and how vivid. Then they are asked to count the pillars from their
image, and to tell what kind of capitals the pillars have, and whether the
shafts are plain or fluted. But at this point the students begin to object. "We
have never counted those pillars, and cannot be expected to know the
number now." In fact, few of them give the correct number, and those who
have reported clear and vivid images are little better off in this respect than
those whose images are dim and vague.
The image, then, does not give you facts that you did not observe in the
presence of the object. The substitute stimulus, which now recalls the
image, only recalls responses which you made when the real object was the
stimulus. If you looked at the object simply to get its general appearance,
the general appearance is all you can recall. If you noted the color of the
object, you can probably recall the color. If you noted such details as the
number of pillars, you can recall these details. But the substitute stimulus
that now arouses the image is by no means the equivalent of the original
peripheral stimulus in making possible a variety of new reactions. Its only
linkage is with reactions actually made by you in response to the real
object. The substitute stimulus, such as the name of a building, became
linked with responses actually made by you, not with responses that you
simply might have made, when the object was present. This important fact
is closely related to the {373} unreliability of testimony that was mentioned
before under the head of "unintentional memory". [Footnote: See pp.
346-348.] Facts recalled are facts previously observed.
It is true, of course, that recalled facts can be compared and new facts be
observed by the comparison. We may recall how John looks, and how
James looks, and note the fact, not previously observed, that they look
alike. A great deal can be inferred in this way by a person who is sitting in
his room far from the objects thought about. But this noting of the
relationships of different objects is a very different matter from observing
what is there, in a single object or scene. What is there can only be
observed when you are there.

CHAPTER XV

348

The Question of Non-Sensory Recall
Many observed facts are not strictly facts of sensation, though observed by
means of the senses. Let us suppose, for an example, that your attention is
caught by the bright green new leaves at the tips of the branches of an
evergreen tree in summer, and that you notice also the darker green of the
older leaves further back along the branches, and, exploring deeper, find
leaves that are dead and brown, while still further in they have all fallen
off, leaving bare branches reaching back to the trunk; so that you finally
"see" how the tree is constructed, as a hollow cone of foliage supported by
an interior framework of branches. All this has meant a lot of different
reactions on your part, and the final "seeing" of how the tree is constructed
would scarcely be called a sensation, since it has required mental work
beyond that of simply seeing the tree. It is a response additional to the
strictly sensory response of seeing the tree.
Now the question is whether this additional response can be recalled,
without recalling at the same time the primary {374} response of seeing the
tree. Can we recall the fact observed about the tree without at the same
time seeing the tree "in the mind's eye"? Must we necessarily have an
image of the tree when we recall the way the tree is constructed?
Since getting the general sensory appearance of the tree, and observing the
way it is constructed, are two different responses, it seems quite
conceivable that either fact should be recalled without the other; and no
one doubts that the sensory appearance of the tree can be recalled without
the other observed fact coming up along with it. But many authorities have
held that the non-sensory fact could not be recalled alone; in other words,
they have held that every recalled fact comes as a sensory image, or with a
sensory image. Persons with ready visual imagery are of course likely to
get a visual image with any fact they may recall. But persons whose visual
imagery is hard to arouse say that they recall facts without any visual
image. I who write these words, being such a person, testify that while I
have been writing and thinking about that tree I have not seen it before my
mind's eye.

CHAPTER XV

349

It is true, however, that I have had images during this time--auditory
images of words expressing the facts mentioned. Another individual might
have had kinesthetic images instead of either visual or auditory. But can
there be a recall of fact without any sensory image?
On this question, which has been called the question of "imageless
thought", though it might better be called that of "imageless recall",
controversy has raged and is not yet at rest, so that a generally accepted
conclusion cannot be stated. But the best indications are to the effect, first,
that vague and fleeting images, especially of the kinesthetic sort, are often
present without being detected except by very fine introspection, some
image being pretty sure to come up every few seconds when we are
engaged in silent thought or {375} recall; but, second, that images are not
present every second of the time, and that at the instant when a non-sensory
fact is recalled it is apt to be alone.
Hallucinations
Since a vivid mental image may be "in all respects the same as an actual
sensation", according to the testimony of some people, the question arises
how, then, an image is distinguished from a sensation. Well, the image does
not usually fit into the objective situation present to the senses. But if it
does fit, or if the objective situation is lost track of, then, as a matter of fact,
the image may be taken for a sensation.
You see some beautiful roses in the florist's window, and you smellthem;
the odor fits into the objective situation very well, till you notice that the
shop door is shut and the window glass impervious to odors, from which
you conclude that the odor must have been your image.
You are lost in thought of an absent person, till, forgetting where you are,
you seem to see him entering the door; he "fits" well enough for an instant,
but then the present situation forces itself upon you and the image takes its
proper place.

CHAPTER XV

350

You are half asleep, almost lost to the world, and some scene comes before
you so vividly as to seem real till its oddity wakens you to the reality of
your bedroom. Or you are fully asleep, and then the images that come are
dreams and seem entirely real, since contact with the objective situation
has been broken.
Images taken for real things are common in some forms of mental disorder.
Here the subject's hold on objective fact is weakened by his absorption in
his own desires and fears, and he hears reviling voices and smells
suspicious {376} odors or sees visions that are in line with his desires and
fears.
Such false sensations are called "hallucinations". An hallucination is an
image taken for a sensation, a recalled fact taken for a present objective
fact. It is a sensory response, aroused by a substitute stimulus, without the
subject's noticing that it is thus aroused instead of by its regular peripheral
stimulus.
Synesthesia.
Quite a large number of people are so constituted as to hear sounds as if
colored, a deep tone perhaps seeming dark blue, the sound of a trumpet a
vivid red, etc. Each vowel and even each consonant may have its own
special color, which combine to give a complex color scheme for a word.
Numbers also may be colored. This colored hearing is the commonest form
of "synesthesia", which consists in responding to a stimulus acting on one
sense, by sensations belonging to a different sense. Whether the persons so
constituted as to respond in this way are constituted thus by nature or by
experience is uncertain, though the best guess is that the extra sensations
are images that have become firmly attached to their substitute stimuli
during early childhood.
Free Association
Mental processes that depend on recall are called "associative processes",
since they make use of associations or linkages previously formed. When

CHAPTER XV

351

some definite interest or purpose steers the associative processes, we speak
of "controlled association", contrasting this with the "free association" that
occurs in an idle mood, when one thought simply calls up another with no
object in view and no more than fleeting desires to give direction to the
sequence of thoughts.
Revery affords the best example of free association. I {377} see my
neighbor's dog out of my window, and am reminded of one time when I took
charge of that dog while my neighbor was away, and then of my neighbor's
coming back and taking the dog from the cellar where I had shut him up;
next of my neighbor's advice with respect to an automobile collision in
which I was concerned; next of the stranger with whom I had collided, and
of the stranger's business address on the card which he gave me; next
comes a query as to this stranger's line of business and whether he was
well-to-do; and from there my thoughts switch naturally to the high cost of
living.
This is rather a drab, middle-aged type of revery, and youth might show
more life and color; but the linkages between one thought and the next are
typical of any revery. The linkages belong in the category of "facts
previously observed". I had previously observed the ownership of this dog
by my neighbor, and this observation linked the dog and the neighbor and
enabled the dog to recall the neighbor to my mind. Most of the linkages in
this revery are quite concrete, but some are rather abstract, such as the
connection between being well-to-do (or not) and the high cost of living;
but, concrete or abstract, they are connections previously observed by the
subject. Sometimes the linkage keeps the thoughts within the sphere of the
same original experience, and sometimes switches them from one past
experience to another, or even away from any specific past experience to
general considerations; yet always the linkage has this character, that the
item that now acts as stimulus has been formerly combined in observation
with the other item that now follows as the response. One fact recalls
another when the two have been previously observed as belonging together.
But suppose, as is commonly the case, that the fact now present in my mind
has been linked, in different past {378} experiences, with several different

CHAPTER XV

352

facts. Then two questions demand our attention: whether all these facts are
recalled; and, if not, what gives the advantage to the fact actually recalled
over the others that are not recalled.
The answer to the first question is plain. The fact first present in mind does
not call up all the associated facts, but usually only one of them, or at least
only one at a time. My neighbor, in the example given, though previously
associated with a dozen other facts, now calls up but two of these facts, and
those two not simultaneously but one after the other. We see a law here that
is very similar to a law stated under the head of attention. There, we said
that of all the objects before us that might be noticed only one was noticed
at a time; and here we say that of all the objects that might be recalled to
mind by association only one is recalled at a time. Both statements can be
combined into the one general "law of reaction" which was mentioned
before, that of all the responses linked to a given stimulus (or complex of
stimuli) only one is actually aroused at the same instant, though several
may be aroused in succession, provided the stimulus continues.
In revery, the stimulus usually does not continue. The first fact thought of
gives way to the fact that it recalls, and that to one that it recalls in turn,
and so on, without much dwelling on any fact. But if we do dwell on any
fact--as upon the thought of a certain person--then this stimulus, continuing
to act, calls up in succession quite a number of associated facts.
If, then, only one of the several facts associated with the stimulus is
recalled at once, our second question presents itself, as to what are the
factors of advantage that cause one rather than another of the possible
responses to occur. The fact first in mind might have called up any one of
several facts, having been linked with each of them in past {379}
experience; and we want to know why it recalls one of these facts rather
than the rest.
The factors of advantage in recall are the factors that determine the
strength of linkage between two facts; and they are:

CHAPTER XV

353

the frequency with which the linkage has occurred; the recency with which
it has occurred; and the intensity with which it has occurred.
If I have frequently observed the connection of two facts, the linkage
between them is strong; if I have recently observed their connection, the
linkage between them is strong till the "recency value" dies away; and if my
observation of the connection of the two facts was a vivid experience, or
intense reaction, then, also, the linkage between them is strong. If these
three factors of advantage work together in favor of the same response,
then that response is sure to occur; but if the three factors pull different
ways, we should have to figure out the balance of advantage before we
could predict which of the possible responses would actually be made.
Naturally enough, even the skilful psychologist is often unable to strike the
balance between the three factors. He does know, however, and all of us
know in a practical way, that strong recency value offsets a lot of
frequency; so that a mere vague allusion to a very recent topic of
conversation can be depended on to recall the right facts to the hearer's
mind, even though they lie outside of his habitual line of interest. "James",
by virtue of frequency, means your brother or friend; but after the lecturer
has been talking about the psychologist James, repetition of this name
infallibly recalls the psychologist to mind.
Besides frequency, recency and intensity, there is, indeed, another factor to
be taken into account; and that is the {380} present state of the subject's
mind. If he is unhappy, unpleasant associations have the advantage; if
happy, pleasant. If he is absorbed in a given matter, facts related to that
matter have the advantage. Frequency, recency and intensity summarize
the history of associations, and measure their strength as dependent on
their history; but the present state of mind is an additional directive factor,
and when it has much to do with recall, we speak of directed or controlled
association.
Before we pass to the topic of controlled association, however, there is
another form of free association, quite different from revery, to be
examined. There is an experiment, called the free association test, in which
the subject is given a series of words as stimuli, and is asked to respond to

CHAPTER XV

354

each word by speaking some other word, the first that is recalled by the
stimulus. No special kind of word need be given in response, but simply the
first word recalled. Though this is called free association, it is controlled to
the extent that the response must be a word, and the result is very different
from revery. Instead of the recall of concrete facts from past experience,
there is recall of words. If you give the subject the stimulus word, "table",
his response is "chair" or "dinner", etc., and often he does not think of any
particular table, but simply of the word. Words are so often linked one with
another that it is no wonder that one recalls another automatically. What
particular word shall be recalled depends on the frequency, recency and
intensity of past linkage.
Though this form of test seems so simple as almost to be silly, it is of use in
several ways. When a large number of stimulus words are used, and the
responses classified, some persons are found to favor linkages that have a
personal significance--"egocentric responses", these are called--while
other persons run to connections that are {381} impersonal and objective.
Thus the test throws some light on the individual's habits of attention. The
test has also a "detective" use, based upon the great efficacy of the factor of
recency; you may be able by it to tell whether an individual has recently
had a certain matter in mind. If he happens to be an individual who has
recently committed some crime, properly selected stimulus words will lead
him to recall the scene of the crime, and thus to make responses that betray
him, unless he checks them and so arouses suspicion by his hesitation.
Another use of the test is for unearthing a person's emotional "complexes",
which of course possess a high intensityvalue. If the subject shows
hesitation and embarrassment in responding to words referring to money,
the indication is that he is emotionally disturbed over the state of his
finances. One person who consulted a doctor for nervousness made
peculiar responses to stimulus words relating to the family, and was
discovered to be much disturbed over his family's opposition to his
projected marriage. The free association test is useful rather as giving the
experienced psychologist hints to be followed up than as furnishing sure
proof of the contents of the subject's mind.
Controlled Association

CHAPTER XV

355

There is a controlled association test conducted like this one in free
association, except that the subject is required to respond to each stimulus
word by a word standing in a specified relation to it. To one series of words
he must respond by saying their opposites; to another, by mentioning a part
of each object named; to another series, consisting of names of countries,
he must respond by naming as quickly as possible the capital of each
country named; and there are many tests of this sort, each dealing with
some class of relationships which, being often observed, are easily handled
{382} by a person of normal intelligence. The intelligent subject makes few
errors in such a test, and responds in very quick time. Indeed, the
remarkable fact is that he takes less time to respond in an easy controlled
association test than in the free association test; which shows that the
"control" acts not simply to limit the response, but also to facilitate it.
The "control" here is often called by the name of "mental set". It is a good
example of a "reaction tendency". On being told you are to give opposites,
you somehow set or adjust your mental machinery for making this type of
response. The mental set thus thrown into action facilitates responses of the
required type, while inhibiting other responses that would readily occur in
the absence of any directive tendency. If the word "good" came as a
stimulus word in a free association test, it might easily arouse the
responses, "good day", "good night", "good boy", "good better", and many
besides, since all of these combinations have been frequently used in the
past; and the balance of frequency, recency and intensity might favor any
one of these responses. But when the subject is set for opposites, the
balance of these factors has little force as against the mental set. The
mental set for opposites favors the revival of such combinations as
"new--old", "good--bad", and such others of this class as have been noted
and used in the subject's past experience.
Mental set is a selective factor, a factor of advantage. It does not supersede
the previously formed associations, or work independently of them, but
selects from among them the one which fits the present task. Does it get in
its work after recall has done its part, or before? Does it wait till recall has
brought up a number of responses, and then pick out the one that fills the
bill? No, it often works much too quickly for that, giving the right response

CHAPTER XV

356

instantly; and introspection is often perfectly clear that none but the right
{383} response is recalled at all. The selective influence of the mental set is
exerted before recall; it facilitates the right recall and inhibits recall of any
but the right response.
In controlled association, as in free association, only one of the facts
previously linked with the stimulus is recalled at a time; but while in free
association the factors of frequency, recency and intensity of past linkage
determine which of the many possible facts shall be recalled, in controlled
association the additional factor of mental set is present and has a
controlling influence in determining which fact shall be recalled. Thus, in
an opposites test, the stimulus word "good" promptly calls up the pair
"good--bad", because the mental set for opposites gives this response a
great advantage over "good night" and other responses which may have a
very strong linkage with the stimulus word.
The mental set is itself a response to a stimulus. It is an inner response
thrown into activity by some stimulus, such as the stimulus of being asked
to give the opposites of a series of words that are presently to be shown or
spoken. This inner response of getting ready for the task can be
introspectively observed by a person who is new to this type of test. It may
take the form of mentally running over examples of opposites--or whatever
kind of responses are to be called for--or it may take the form of calling up
some image or diagram or gesture that symbolizes the task. A visual image
of the nose on the face may serve as a symbol of the part-whole
relationship, a small circle inside a larger one may symbolize the relation
of an object to a class of objects, and gesturing first to the right and then to
the left may symbolize the relationship of opposites. But as the subject
grows accustomed to a given task, these conscious symbols fade away, and
nothing remains except a general "feeling of readiness" or of "knowing
what you are {384} about". The mental set remains in force, however, and
is no less efficient for becoming almost unconscious.
Examples of Controlled Association

CHAPTER XV

357

Dwelling so long on the test for controlled association may have created
the impression that this is a rather artificial and unusual type of mental
performance; but in reality controlled association is a very representative
mental process, and enters very largely into all forms of mental work. This
is true in arithmetical work, for example. A pair of numbers, such as 8 and
3, has been linked in past experience with several responses; it means 83, it
means 11, it means 5, and it means 24. But if you are adding, it means 11,
and no other response occurs; if you are multiplying, it means 24, and only
that response occurs. The mental set for multiplying facilitates the
responses of the multiplication table and inhibits those of the addition
table, while the mental set for adding does the reverse. Rapid adding or
multiplying would be impossible without an efficient mental set. Thus in
arithmetic, as in the tests, the mental set is an inner response to the task.
In reading, there is a mental set which is an inner response to the context,
and which determines which of the several well-known meanings of a word
shall actually be called to mind when the word is read. Presented alone, a
word may call up any of its meanings, according to frequency, etc.; but in
context it usually brings to mind just the one meaning that fits the context.
The same is true of conversation.
The objective situation arouses a mental set that controls both thought and
action. The situation of being in church, for example, determines the
meanings that are got from the words heard, and controls the motor
behavior to {385} fit the occasion. The subject, observing the situation,
adjusts himself to it, perhaps without any conscious effort, and his
adjustment facilitates appropriate mental and motor reactions, while
inhibiting others.
A problem arouses a mental set directed towards solution of the problem. A
difficult problem, however, differs from a context or familiar task or
situation in this important respect, that the appropriate response has not
been previously linked with the present stimulus, so that, in spite of ever so
good a mental set, the right response cannot immediately be recalled. One
must search for the right response. Still, the mental set is useful here, in
directing the search, and keeping it from degenerating into an aimless

CHAPTER XV

358

running hither and thither. Problem solution is so different a process from
smooth-running controlled association that it deserves separate treatment,
which will be given it a few chapters further on, under the caption of
reasoning.
{386}
EXERCISES
1. Outline the chapter.
2. The rating of images belonging under different senses. Try to call up the
images prescribed below, and rate each image according to the following
scale:
3. . . . The image is practically the same as a sensation, as bright, full,
incisive, and, in short, possessed of genuine sensory quality.
2. . . . The image has a moderate degree of sensory quality.
1. . . . The image has only faint traces of sensory quality.
0. . . . No sensory image is called up, though there was a recall of the fact
mentioned.
Call up visual images of: a friend's face, a sun flower, a white house among
trees, your own signature written in ink.
Call up auditory images of: the sound of your friend's voice, a familiar
song, an automobile horn, the mewing of a cat.
Call up olfactory images of: the odor of coffee, of new-mown hay, of tar, of
cheese.
Call up gustatory images of: sugar, salt, bitter, acid.

CHAPTER XV

359

Call up cutaneous images of: the feel of velvet, a lump of ice, a pencil held
against the tip of your nose, a pin pricking your finger.
Call up kinesthetic imagery of: lifting a heavy weight, reaching up to a high
shelf, opening your mouth wide, kicking a ball.
Call up organic imagery of: feeling hungry, feeling thirsty, feeling nausea,
feeling buoyant.
In case of which sense do you get the most lifelike imagery, and in case of
which sense the least. By finding the average rating given to the images of
each sense, you can arrange the senses in order, from the one in which
your imagery rates highest to the one in which it rates lowest. It may be
best to try more cases before reaching a final decision on this matter.
3. Verbal imagery. When you think of a word, do you have a visual,
auditory, or kinesthetic image of it--or how does it come?
4. In reading, notice how much imagery of objects, persons, scenes, sounds,
etc., occurs spontaneously.
5. Analysis of a revery. Take any object as your starting point, and let your
mind wander from that wherever it will for a minute. {387} Then review
and record the series of thoughts, and try to discover the linkages between
them.
6. Free association experiment. Respond to each one of a list of
disconnected words by saying the first word suggested by it. Use the
following list: city, war, bird, potato, day, ocean, insect, mountain, tree,
roof.
7. Controlled association, (a) Use the same list of stimulus words as above,
but respond to each by a word meaning the opposite or at least something
contrasting, (b) Repeat, naming a part of the object designated by each of
these same words, (c) Repeat again, naming an instance or variety of each
of the objects named. Did you find wrong responses coming up, or did the

CHAPTER XV

360

mental set exclude them altogether?
8. Write on a sheet of paper ten pairs of one-place numbers, each pair in a
little column with a line drawn below, as in addition or multiplication
examples. See how long it takes you to add, and again how long it takes to
multiply all ten. Which task took the longer, and why? Did you notice any
interference, such as thinking of a sum when you were "set" for products?
9. Free association test for students of psychology. Respond to each of the
following stimulus words by the first word suggested by it of a
psychological character:
conditioned objective gregarious delayed correlation fear negative
end-brush mastery rat pyramidal submission stimulus semicircular
feeling-tone substitute kinesthetic primary axon advantage tension synapse
field blend autonomic quotient rod retention limit fovea nonsense apraxia
saturated higher thalamus red-green paired organic complementary
economy tendency after exploration preparatory basilar recency native
fluctuation curve endocrine dot perseveration expressive Binet synesthesia
James-Lange frontal facilitation flexion overlapping
{388}
REFERENCES
On imagery, synesthesia, etc., see Gallon's Inquiries into Human Faculty
and Its Development, 1883, pp. 57-112; and for more recent studies of
imagery see G. H. Betts on The Distribution and Function of Mental
Imagery, 1909, and Mabel R. Fernald on The Diagnosis of Mental
Imagery, 1912.
On the diagnostic use of the association test, an extensive work is that of C.
G. Jung, Studies in Word-Association, translated by Eder, 1919.
{389}

CHAPTER XVI

361

CHAPTER XVI
THE LAWS OF ASSOCIATION
AN ATTEMPT TO REDUCE THE LEARNING PROCESS TO ITS
ELEMENTS
This is a very serious occasion. What we now have before us is one of the
great outstanding problems of psychology, a problem that has come down
through the ages, with succeeding generations of psychological thinkers
contributing of their best to its solution; and our task is to attack this
problem afresh in the light of modern knowledge of the facts of learning
and memory. We wish to gather up the threads from the three preceding
chapters, which have detailed many facts regarding learned reactions of all
sorts, and see whether we cannot summarize our accumulated knowledge in
the form of a few great laws. We wish also to relate our laws to what is
known of the brain machinery.
The Law of Exercise
Of one law of learning, we are perfectly sure. There is no doubt that the
exercise of a reaction strengthens it, makes it more precise and more
smooth-running, and gives it an advantage over alternative reactions which
have not been exercised. Evidence for these statements began to appear as
soon as we turned the corner into this part of our subject, and has
accumulated ever since. This law is sometimes called the "law of habit",
but might better be called the "law of improvement of a reaction through
exercise", or, more briefly, the "law of exercise".
{390}
The law of exercise is very broad in its scope, holding good of life generally
and not alone of mental life. Exercise of a muscle develops the muscle,
exercise of a gland develops the gland; and, in the same way, exercise of a
mental reaction strengthens the machinery used in making that reaction.

CHAPTER XVI

362

Let us restate the law in terms of stimulus and response. When a given
stimulus arouses a certain response, the linkage between that stimulus and
that response is improved by the exercise so obtained, and thereafter the
stimulus arouses the response more surely, more promptly, more strongly
than before.
Under the law of exercise belong several sub-laws already familiar to us.
1. The law of frequency refers to the cumulative effect of repeated exercise.
The practice curve gives a picture of this sub-law, showing how
improvement with repeated exercise of a performance is rapid at first and
tapers off into the physiological limit, beyond which level more repetition
cannot further improve the performance. The superiority of "spaced study"
over unspaced means that exercise is more effective when rest periods
intervene between the periods of exercise; as this is notoriously true of
muscular exercise, it is not surprising to find it true of mental performances
as well.
2. The law of recency refers to the gradual weakening of the machinery for
executing a reaction when no longer exercised; it is the general biological
law of "atrophy through disuse" applied to the special case of learned
reactions. As exercise improves the linkage between stimulus and response,
so disuse allows the linkage to deteriorate. This law is pictured more
completely and quantitatively in the curve of forgetting.
Really, there are two laws of recency, the one being a {391} law of
retention, the other a law of momentary warming up through exercise. The
law of retention, or of forgetting, is the same as atrophy through disuse.
The warming-up effect, well seen in the muscle which is sluggish after a
long rest but becomes lively and responsive after a bit of exercise,
[Footnote: See p. 73.] appears also in the fact that a skilled act needs to be
done a few times in quick succession before it reaches its highest efficiency,
and in the fact of "primary memory", the lingering of a sensation or
thought for a few moments after the stimulus that aroused it has ceased.
Primary memory is not strictly memory, since it does not involve the recall
of facts that have dropped out of mind, but just a new emphasis on facts

CHAPTER XVI

363

that have not yet completely dropped out. Warming up is not a phenomenon
of learning, but it is a form of recency, and is responsible for the very
strong "recency value" that is sometimes a help in learning, [Footnote: See
p. 345.] and sometimes a hindrance in recall. [Footnote: See p. 356.]
3. The law of intensity simply means that vigorous exercise strengthens a
reaction more than weak exercise. This is to be expected, but the question
is, in the case of mental performances, how to secure vigorous exercise.
Well, by active recitation as compared with passive reception, by close
attention, by high level observation. In active recitation, the memorizer
strongly exercises the performance that he is trying to master, while in
reading the lesson over and over he is giving less intense exercise to the
same performance.
The Law of Effect
We come now to a law which has not so accepted a standing as the law of
exercise, and which may perhaps be another sub-law under that general
law. The "law of effect" may, however, be regarded simply as a generalized
statement of {392} the facts of learning by trial and error. The cat, in
learning the trick of escaping from a cage by turning the door-button,
makes and therefore exercises a variety of reactions; and you might expect,
then, in accordance with the law of exercise, that all of these reactions
would be more and more firmly linked to the cage-situation, instead of the
successful reaction gradually getting the advantage and the unsuccessful
being eliminated. The law of effect, stated as objectively as possible, is
simply that the successful or unsuccessful outcome or effect of a reaction
determines whether it shall become firmly linked with the stimulus, or
detached from the stimulus and thus eliminated. The linkage of a response
to a stimulus is strengthened when the response is a success, and weakened
when the response is a failure.
Success here means reaching the goal of an awakened desire or
reaction-tendency, and failure means being stopped or hindered from
reaching the goal. Since success is satisfying and failure unpleasant, the
law of effect is often stated in another form: a response that brings

CHAPTER XVI

364

satisfaction is more and more firmly attached to the situation and
reaction-tendency, while a response that brings pain or dissatisfaction is
detached.
The law of effect is a statement of fact, but the question is whether it is an
ultimate fact, or whether it can be explained as a special case of the law of
exercise. Some have suggested that it is but a special case of the sub-law of
frequency; they call attention to the fact that the successful response must
be made at every trial, since the trial continues till success is attained,
whereas no one unsuccessful response need be made at every trial;
therefore in the long run the successful response must gain the frequency
advantage. But there is a very ready and serious objection to this
argument; for it may and does happen that an unsuccessful response is
repeated several times during a single {393} trial, while the successful
response is never made more than once in a single trial, since success
brings the trial to a close; and thus, as a matter of fact, frequency often
favors the unsuccessful response--which, nevertheless, loses out in
competition with the successful response.
Can the law of effect be interpreted as an instance of the sub-law of
recency? The successful reaction always occurs at the end of a trial, and is
the most recent reaction at the beginning of the next trial. This recency
might have considerable importance if the next trial began instantly (as in
unspaced learning), but can have no importance when so long as interval
as a day is left between trials; for evidently the recency of twenty-four
hours plus ten seconds is not effectively different from that of an even
twenty-four hours. Recency, then, does not explain the law of effect.
Can it be explained as an instance of the sub-law of intensity? An animal,
or man, who sees success coming as he is making the reaction that leads
directly to success, throws himself unreservedly into this reaction, in
contrast with his somewhat hesitant and exploratory behavior up to that
time. The dammed-up energy of the reaction-tendency finds a complete
outlet into the successful reaction, and therefore the successful reaction is
more intensely exercised than the unsuccessful. This seems like a pretty
good explanation, though perhaps not a complete explanation.

CHAPTER XVI

365

Limitations of the Law of Exercise
The law of exercise, with all its sub-laws, is certainly fundamental and
universal; it is always in operation whenever anything is learned; and yet,
just by itself, it goes only halfway towards accounting for learned
reactions. For a reaction to be exercised, it must be made, and the law of
exercise presupposes that it is made, and does not attempt to account for its
being made in the first place.
{394}
The law of exercise does not cover the formation of new linkages, but only
the strengthening of linkages that are already working. It does not explain
the attachment of a response to some other than its natural stimulus, nor
the combination, of responses into a higher unit, nor the association of two
facts so that one later recalls the other. We learn by doing, but how can we
do anything new so as to start to learn? We learn by observing
combinations of facts, but how in the first place do we combine the facts in
our minds?
How, for example, can we learn to respond to the sight of the person by
saying his name? Evidently, by exercising this linkage of stimulus and
response. But how did we ever make a start in responding thus, since there
is nothing about the person's looks to suggest his name? The name came to
us through the ear, and the face by way of the eye; and if we repeated the
name, that was a response to the auditory stimulus and not to the visual.
How has it come about, then, that we later respond to the visual stimulus by
saying the name?
In short, the more seriously we take the law of exercise, the more we feel
the need of a supplementary law to provide for the first making of a
reaction that then, by virtue of exercise, is strengthened.
This is the problem that occupied the older writers on psychology when
they dealt with "association"; and their solution of the problem was
formulated in the famous "laws of association". The laws of association

CHAPTER XVI

366

were attempts to explain how facts got associated, so that later one could
recall another.
These laws have a long history. From Aristotle, the ancient Greek who first
wrote books on psychology, there came down to modern times four laws of
association. Facts become associated, according to Aristotle, when they
are {395} contiguous (or close together) in space, or when they are
contiguous in time, or when they resemble each other, or when they
contrast with each other. The psychologists of the earlier modern period, in
the eighteenth and first part of the nineteenth centuries, labored with very
good success to reduce these four laws to one comprehensive law of
association. Contiguity in space and in time were combined into a law of
association by contiguity in experience, since evidently mere physical
contiguity between two objects could establish no association between them
in any one's mind except as he experienced them together.
Association by Similarity
Continuing their simplification of the laws of association, these older
psychologists showed that resemblance and contrast belonged together,
since to be similar things must have something in common, and to be
contrasted also two things must have something in common. You contrast
north with south, a circle and a square, an automobile and a wheelbarrow;
but no one thinks of contrasting north with a circle, south with an
automobile, or a square and a wheelbarrow, though these pairs are more
incongruous than the others. Things that are actually associated as
contrasting with each other have something in common; and therefore
association by contrast could be included under association by similarity.
Thus the four laws had been reduced to two, association by contiguity and
association by similarity.
The final step in this reduction was to show that association by similarity
was a special case of association by contiguity. To be similar, two things
must have something in common, and this common part, being contiguous
with the remainder of each of the two things, establishes an indirect
contiguity between the two things, a {396} sort of contiguity bridge between

CHAPTER XVI

367

them. One thing has the parts or characteristics, A B X Y, and the similar
thing has the parts or characteristics, C D X Y; and thus X Y, when seen in
the second thing, call up A B, with which they are contiguous in the first
thing.
A stranger reminds me of my friend because something in the stranger's
face or manner has been met with before in my friend; it has been
contiguous with my friend, and recalls him by virtue of this contiguity. The
stranger, as a whole individual, has never been contiguous with my friend,
but some characteristic of the stranger has been thus contiguous. In
association by similarity, it is not the whole present object that arouses
recall of the similar object, but some part of the present object. This kind of
association is important in thinking, since it brings together facts from
different past experiences, and thus assembles data that may be applied to
a new problem. If every new object or situation could only be taken as a
whole, it could not remind me of anything previously met; and I should be
like an inexperienced child in the presence of each new problem; but, taken
part by part, the novel situation has been met with before, and can be
handled in the light of past experience.
Exactly what there is in common between two similar faces or other objects
cannot always be clearly made out; but the common characteristic is there,
even if not consciously isolated, and acts as an effective stimulus to recall.
Association by Contiguity
This reduction of all the laws of association to one great law was no mean
achievement; and the law of association by contiguity in experience holds
good. If one thing recalls another to your mind, you can be sure that the
two {397} have been contiguous in your experience, either as wholes or
piecemeal. For two things to become associated, they must be experienced
together.
Yes, the law holds good, when thus stated--but notice that the statement is
virtually negative. It says, in effect, that two things do not become
associated unless they are contiguous in experience. If it were turned about

CHAPTER XVI

368

to read that two things do become associated if they are contiguous in
experience, it would no longer be a true law, for the exceptions would then
be extremely numerous.
The memory and testimony experiments have brought many exceptions to
light. Show a person twenty pictures in a row, and let him examine each
one in turn so closely that he can later recognize every one of them; and
still he will not have the adjacent pictures so associated that each one can
call up the next in order. To accomplish his last task, he has to observe the
order specifically; it is not enough that he simply experiences pictures
together. Or, again, read to a person twenty pairs of words, asking him to
notice the pairs so that later he can respond by the second word of any pair
when the first word is given him; and read the list through three or four
times, so that he shall be able to make almost a perfect score in the
expected test; still he will have formed few associations between the
contiguous pairs, and will make a very low score if you ask him to recite
the pairs in order. Many similar experiments have yielded the same general
result--contiguity in experience and still no association.
The law of association by contiguity is unsatisfactory from a modern
standpoint because it treats only of the stimulus, and says nothing about the
response. It states, quite truly, that stimuli must be contiguous in order that
an association between them may be formed, but it neglects to state that the
association, being something in us, must {398} be formed by our reaction
to the stimuli. It is especially necessary to consider the response because,
as we have just seen, the response is not always made and the association,
therefore, not always formed. Only if the stimuli are contiguous, can the
associating response be aroused, but they do not infallibly arouse it even if
they are contiguous.
The law of contiguity is incomplete, also, because it is not applicable to the
association of two motor acts into a coördinated higher unit, or of the
combination of two primary emotions into a higher emotional unit.
In a word, the time-honored law of association is no longer satisfactory
because it does not fit into a stimulus-response psychology. It comes down

CHAPTER XVI

369

from a time when the motor side of mental performances was largely
overlooked by psychology, and when the individual was pictured as being
passively "impressed" with the combinations of facts that were presented to
his senses.
The Law of Combination
What we need, then, as an improvement on the old law of association by
contiguity, and as a supplement to the law of exercise, is some law
governing the response to two or more contiguous stimuli. Now we already
have such a law, which we put to some use in studying attention, [Footnote:
See pp. 268-264.] and called the law of "combination", or of "unitary
response to a plurality of stimuli". We had better fetch that law out again
and put it in good repair, and see whether it is adequate for the job that we
now have on hand. In a very general, abstract form, the law of combination
read that "two or more stimuli may arouse a single joint response". Let us
add a single word, which had not risen above the horizon when we
formulated the law before, and say that {399} two or more contiguous
stimuli may arouse a single joint response.
That seems very little to say; can we possibly go far with so simple a
statement? Well, let us see. In saying that two or more stimuli arouse a
single response, we imply that there is already some rudimentary linkage
between each stimulus and their common response, and that this linkage is
used in arousing the response. Now bring in our trusty law of exercise, and
we see that the use, or exercise, of such a linkage may strengthen it to such
an extent that, later, a single one of the stimuli may arouse the response
which was originally aroused by the whole collection of stimuli.
Does that promise any better? Probably it requires further discussion and
exemplification before its value can be appreciated. Let us, then, first
discuss it a bit, and then apply it to the explanation of the chief varieties of
learned reaction that have come to our attention.
The law of combination attempts to show how it comes about that a
stimulus, originally unable to arouse a certain response, acquires the

CHAPTER XVI

370

power of arousing it; and the law states that this occurs only when the
originally ineffective stimulus is combined with others which can and do
arouse the response. The ineffective stimulus, being one of a combination of
stimuli which collectively arouse the response, participates to some slight
degree in arousing that response and may thus become effectively linked
with the response.
Notice an assumption underlying the law of combination. Evidently a
stimulus could not take part in arousing a response unless there were some
pre-existing linkage between it and the response. This linkage may however
be extremely loose and feeble, and wholly incapable by itself of arousing
the response. The assumption of pre-existing loose linkage between almost
any stimulus and almost any response is justified by the facts of playful
behavior and trial and error {400} behavior. In addition to the close reflex
connections provided in the native constitution, and in addition also to the
close connections formed in previous training, there are at any time, and
especially in childhood and youth, a vast number of loose connections.
These are too weak to operate singly, until they have coöperated in
producing a response, and thus been individually strengthened, after which
they may be able singly to produce the response.
The law of combination, then, as applied to learning, includes four points:
(a) A collection of stimuli may work together and arouse a single response.
(b) This is possible because of pre-existing loose linkage between the
separate stimuli and the response.
(c) When any stimulus, working together with others, helps to arouse a
response, its linkage with that response is strengthened by exercise.
(d) The linkage may be sufficiently strengthened so that a single stimulus
can arouse the response without help from the other stimuli that were
originally necessary.

CHAPTER XVI

371

Having now abundantly stated and reiterated the law of combination in the
abstract, let us turn to concrete instances of learned reactions, and see how
the law takes care of them. We have already classified a large share of all
the concrete instances under a few main heads, as substitute stimulus,
substitute response, combination (or association) of stimuli, and
combination of responses. We shall presently find it possible to reduce
these four classes to two, since the association of two objects, by virtue of
which one of them later recalls the other, is a rather complicated case of
substitute stimulus, while the combination of movements into a higher unit
is a complicated case of substitute response.
[Footnote: To distinguish between "substitute stimulus" and "substitute
response" is, in strict logic, like distinguishing between "inside out" and
"outside in." Whenever there is a substitute stimulus there is also a
substitute response, of course, since this stimulus, in being substituted for
another, gets that other's response in place of its own original response;
and in the same way, you can always find substitute stimulus in any
instance of substitute response; for, in being substituted for another, a
response gets that other's stimulus in place of its own original stimulus. For
all that, the distinction between the two main cases of learning is of some
importance, since sometimes the changed stimulus, and sometimes the
changed response, is the interesting fact.]
{401}
I. SUBSTITUTE STIMULUS EXPLAINED BY THE LAW OF
COMBINATION
Here the response, without being itself essentially changed, becomes
attached to a new stimulus. We distinguish two cases under the general
head of substitute stimulus. In the one case, the substitute stimulus was
originally extraneous, and unnecessary for arousing the response, while in
the other case it was originally necessary as part of a team of stimuli that
aroused the response.
A. Substitute Stimulus Originally Unnecessary for Arousing the Response

CHAPTER XVI

372

1. Conditioned reflex.
This is the very simplest case belonging under the law of combination. The
dog that responded to the bell by a flow of saliva, after the bell plus a
tasting substance had acted together on him time after time, is the typical
instance; and another good instance is that of the little child who was
"taught" to shrink from a rabbit by the sounding of a harsh noise along
with the showing of the rabbit. [Footnote: See p. 303.] The explanation of
all instances of conditioned reflex is the same. We have an effective
stimulus acting, i.e., a stimulus strongly linked with the response; and we
also have acting an ineffective stimulus, which gets drawn into the same
reaction. The effective stimulus determines what response shall be made,
and the other stimulus finds an outlet {402} into that response, being, as it
seems, attracted towards the activated response, sucked into it. The weak
linkage from the ineffective stimulus to the response, being thus used and
strengthened, later enables this stimulus to arouse the response
single-handed.
This sort of thing is best presented in a diagram. A full line in the diagram
denotes a linkage strong enough to work alone, while a dotted line denotes
a weak linkage. Letters stand for stimuli and responses. In the diagram for
conditioned reflex, A is the original effective stimulus (the rasping noise in
the instance of the child and the rabbit), and B is the ineffective stimulus
(the sight of the rabbit). R is the shrinking response, linked strongly to the
stimulus A and only weakly to the stimulus B, which has several other
linkages fully as good as the linkage B-R. But A arouses the response R;
and R, being thus activated, draws on B and brings the linkage B-R into
use. After this has occurred a number of times, the linkage B-R has been so
strengthened by repeated exercise that it can operate alone, so that the
rabbit brings the shrinking response even in the absence of A, the noise.
[Illustration: Fig. 55.--Attachment of the substitute stimulus in the case of
the conditioned reflex.]
At first, the child shrinks from the noise, but, the rabbit being before his
eyes, he incidentally shrinks from the rabbit as well. He really shrinks in

CHAPTER XVI

373

response to all the stimuli acting on him at that moment. He shrinks from
the whole situation. He makes a unitary response to the whole collection of
contiguous stimuli, and thus exercises the linkage between each stimulus
and their joint response. The {403} linkage between rabbit and shrinking is
later strong enough to work alone. It is a clear case of the law of
combination.
2. Learning the names of things.
A child who can imitate simple words that he hears is shown a penny and
the word "penny" is spoken to him. To this combination of stimuli he
responds by saying the word. This is primarily a response to the auditory
stimulus, since the sight of the penny, though it might probably have
aroused some response, and even some vocal response from the child, had
no strong linkage with this particular vocal response. But the auditory
stimulus determined the response, and attracted the visual stimulus into this
particular channel of saying "penny". The linkage from the sight of the
penny to the saying of this word being thus strengthened by exercise, the
seen penny later gives the right vocal response, without any auditory
stimulus to assist.
[Illustration: Fig. 56.--Linkage of a name to an object. The diagram is
arranged to illustrate the formation of a linkage from the sight of the object
to saying its name. A very similar diagram would illustrate the linkage from
the name to the thought or image of the object. The acquiring of mental
images seems to be essentially the same process as the acquiring of
conditioned reflexes, and of names. (Figure text: object seen, various
possible responses, name heard, name spoken)]
{404}
B. Substitute Stimulus Originally an Essential Member Of A Team of
Stimuli That Aroused the Response
1. Observed grouping or relationship.

CHAPTER XVI

374

"Learning by observation" is a very important human accomplishment, and
we found many evidences of its importance in our study of the process of
memorizing. The facts observed, which assist memory so greatly, are
usually relations or groups.
[Illustration: Fig. 57.--The formation of an association between two objects
by observing their grouping or relationship. (Figure text: response of
observing the Group A B, thought of Group A B)]
Evidently the observation of a group of things is a response to a collection
of stimuli, and could not originally be aroused by any one of the stimuli
alone. The same is true of observing a relationship; the observation is a
response to two things taken together, and not, originally, to either of the
two things taken alone. In spite of this, a single one of the things may later
call to mind the relationship, or the group; that is, it arouses the response
originally made to the pair or group of stimuli. The single stimulus has
been substituted for the team that originally aroused the response. Its
linkage with the response has been so strengthened by exercise as to
operate effectively without assistance.
For example, in learning pairs of words in a "paired {405} associates
experiment", [Footnote: See p. 336.] the subject is apt to find some relation
between the words forming a pair, even though they are supposed to be
"unrelated words". When he has thus learned the pair, either of the words
in it will recall the observed relation and the other word of the pair.
Sometimes, after a long interval especially, the relation is recalled without
the other word. One subject fixed the pair, "windy--occupy", by thinking of
a sailor occupying a windy perch up in the ropes. Some weeks later, on
being given the word "windy", he recalled the sailor on the perch, but could
not get the word "occupy". That is, he made the same response to "windy"
that he had originally made to "windy--occupy", but did not get the
response completely enough to give the second word.
In the typical cases of association by contiguity when one object reminds us
of another that was formerly experienced together with it, the law of
combination comes in as just described. The two objects were observed to

CHAPTER XVI

375

be grouped or related in some way, or some such unitary response was
made to the two objects taken together, and this response became so linked
to each of the objects that later a single one of them arouses this unitary
response and recalls the other object. In the free association test,
[Footnote: See p. 380.] the stimulus word "dimple" calls up the previously
made response of seeing a dimple in a cheek, and so leads to the word
"cheek". In a controlled association test, where opposites are required, the
stimulus word "mythical" arouses the previously made observation of the
antithesis of mythical and historical, and so leads to the motor response of
saying the latter word.
[Footnote: When, however, this indirect linkage between stimulus and
motor response is frequently exercised, short-circuiting takes place (see p.
338), and the stimulus word arouses the motor response directly.
Short-circuiting follows the law of combination very nicely. Let a stimulus
S arouse an idea I and this in turn a motor act M. S--I--M represents the
linkages used. But undoubtedly there is a weak pre-existing linkage directly
across from S to M, and this gets used to a slight degree, strictly according
to the conditioned reflex diagram, with I playing the part of the effective
stimulus in arousing M, and S the part of the originally ineffective stimulus.
By dint of being exercised in this way, the linkage S--M becomes strong
enough to arouse the motor response directly, and I is then very likely to be
left out altogether.]
{406}
2. Response by analogy and association by similarity.
When an object reminds me of a similar object, that is association by
similarity. But suppose I actually take the object to be the similar object,
and behave towards it accordingly; then my reaction is called "response by
analogy". Once, when far from home, I saw a man whom I took to be an
acquaintance from my home town, and stepped up to him, extending my
hand. He did not appear very enthusiastic, and informed me that, in his
opinion, I had made a mistake. This was response by analogy, but if I had
simply said to myself that that man looked like my acquaintance, that would

CHAPTER XVI

376

have been association by similarity. Really, association by similarity is the
more complex response, for it involves response to the points of newness in
the present object, as well as to the points of resemblance to the familiar
object, whereas response by analogy consists simply in responding to the
points of resemblance.
Response by analogy often appears in little children, as when they call all
men "papa"' or as when they call the squirrel a "kitty" when first seen. If
they call it a "funny kitty", that is practically association by similarity,
since the word "funny" is a response to the points in which a squirrel is
different from a cat, while the word "kitty" is a response to the points of
resemblance.
But response by analogy is not always so childish or comic as the above
examples might seem to imply. When we respond to a picture by
recognizing the objects depicted, that is response by analogy, since the
pictured object is only {407} partially like the real object; a bare outline
drawing may be enough to arouse the response of "seeing" the object.
Other instances of response by analogy will come to light when, in the next
chapter, we come to the study of perception.
[Illustration: Fig. 58.--Response by analogy. The letters, A, B, X, Y,
represent the several stimuli that make up the original object, and each of
them becomes well linked with their common response (seeing the object,
and perhaps naming it). When the linkage between X and Y and the
response has become strong, a similar object, presenting X and Y along
with other new stimuli, C and D, appears, and arouses the old response, by
virtue of the now-effective linkage from X and Y to this response.]
[Illustration: Fig. 59.--Association by similarity. Everything here as in the
previous diagram, except that C and D get a response in addition to that
aroused by X and Y, and so the new object is seen to be new, while at the
same time it recalls the old object to mind.]
The machinery of response by analogy is easily understood by aid of the
law of combination. A complex object, presenting a number of parts and

CHAPTER XVI

377

characteristics, arouses the response of seeing and perhaps naming the
object. This is a unitary response to a collection of stimuli, and each of the
parts or characteristics of the object participates in arousing the response,
and the linkage of each part with the response is thus strengthened. Later,
therefore, the whole identical object is not required to arouse this same
{408} response, but some of its parts or characteristics will give the
response, and they may do this even when they are present in an object that
has other and unfamiliar parts and characteristics.
The machinery of association by similarity is the same, with the addition of
a second response, called out by the new characteristics of the present
object.
II. SUBSTITUTE RESPONSE EXPLAINED BY THE LAW OF
COMBINATION
The substitute response machinery is more complicated than that of the
substitute stimulus, as it includes the latter and something more. What that
something more is will be clear if we ask ourselves why a substitute
response should ever be made. Evidently because there is something wrong
with the original response; if that were entirely satisfactory, it would
continue to be made, and there would be no room for a substitute. The
original response being unsatisfactory to the individual, how is he to find a
substitute? Only by finding some stimulus that will arouse it. This is where
trial and error come in, consisting in a search for some extra stimulus that
shall give a satisfactory response.
Suppose now that the extra stimulus has been found which arouses a
satisfactory substitute response. The original stimulus, or the
reaction-tendency aroused by it, still continuing, participates in arousing
the substitute response, playing the part of the originally ineffective
stimulus in the conditioned reflex. Thus the original stimulus becomes
strongly linked with the substitute response.
The process of reaching a substitute response thus includes three stages:
(a) original response found unsatisfactory, (b) new stimulus found which

CHAPTER XVI

378

gives a satisfactory substitute response, (c) attachment of the substitute
response to the original stimulus.
{409}
There are two main cases under the general head of substitute response. In
one case, the substitute response is essentially an old response, not
acquired during the process of substitution, but simply substituted, as
indicated just above, for the original response to the situation. This
represents the common trial and error learning of animals. The second
case is that where the substitute response has to be built up by combination
of old responses into a higher unit.
C. Substitute Response, but not in Itself a New Response
I. Trial and error.
Our much-discussed instance of the cat in the cage need not be described
again, but may simply be illustrated by a diagram.
[Illustration: Fig. 60.--How the cat learns the trick of escaping from the
cage by unlatching the door. S is the situation of being shut up in a cage,
and T is the tendency to get out. R1 is the primary response aroused by this
tendency, which response meets with failure, not leading to the end-result
of the tendency. Responses are then made to various particular stimuli
about the cage, and one of these stimuli, the door-latch, X, gives the
response R2 which leads to the end-result. Now the response R2 was in
part aroused by T, and its pre-existing weak linkage with T is so
strengthened by exercise that T, or we may say S, comes to give the correct
response without hesitation.]
{410}
2. Learning to balance on a bicycle.

CHAPTER XVI

379

When the beginner feels the bicycle tipping to the left, he naturally
responds by leaning to the right, and even by turning the wheel to the right.
Result unsatisfactory--strained position and further tipping to the left. As
the bicyclist is about to fall, he saves himself by a response which he has
previously learned in balancing on his feet; he extends his foot to the left,
which amounts to a response to the ground on the left as a good base of
support. Now let him sometime respond to the ground on his left by turning
his wheel that way, and, to his surprise and gratification, he finds the
tipping overcome, and his balance well maintained. The response of
turning to the left, originally made to the ground on the left (but in part to
the tipping), becomes so linked with the tipping as to be the prompt
reaction whenever tipping is felt. The diagram of this process would be the
same as for the preceding instance.
D. Substitute Response, the Response Being a Higher Motor Unit
1. The brake and clutch combination in driving an automobile.
This may serve as an instance of simultaneous coördination, since the two
movements which are combined into a higher unit are executed
simultaneously. The beginner in driving an automobile often has
considerable trouble in learning to release the "clutch", which, operated by
the left foot, ungears the car from the engine, and so permits the car to be
stopped without stopping the engine. The foot brake, operated by the right
foot, is comparatively easy to master, because the necessity for stopping the
car is a perfectly clear and definite stimulus. Now, when the beginner gets
a brake-stimulus, he responds promptly with his right foot, but neglects to
employ his left foot on the clutch, because he has no effective
clutch-stimulus; there is nothing {411} in the situation that reminds him of
the clutch. Result, engine stalled, ridicule for the driver. Next time,
perhaps, he thinks "clutch" when he gets the brake-stimulus, and this
thought, being itself a clutch-stimulus, arouses the clutch-response
simultaneously with the brake-response. After doing this a number of times,
the driver no longer needs the thought of the clutch as a stimulus, for the
left foot movement on the clutch has become effectively linked with the
brake-stimulus, so that any occasion that arouses the brake-response

CHAPTER XVI

380

simultaneously arouses the clutch response.
[Illustration: Fig. 61.--Combining clutch-response with brake-response. At
first, the brake-stimulus has only a weak linkage with the clutch-response,
and an extra stimulus has to be found to secure the clutch-response. But
whenever the clutch-response is made while the brake-stimulus is acting,
the weak linkage between these two is exercised, till finally the
brake-stimulus is sufficient to give the clutch-response, along with the
brake-response.]
The combination of two responses is effected by linking both to the same
stimulus; thus the two become united into a coördinated higher motor unit.
2. The word-habit in typewriting furnishes an example of successive
coördination, the uniting of a sequence of movements into a higher unit.
[Footnote: See p. 324.] The beginner has to spell out {412} the word he is
writing, and make a separate response to each letter; but when he has well
mastered the letter-habits, and, still unsatisfied, is trying for more speed, it
happens that he thinks ahead while writing the first letter of a word, and
prepares for the second letter. In effect, he commences reacting to the
second letter while still writing the first. This goes further, till he
anticipates the series of letters forming a short word while still at the
beginning of the word. The letter movements are thus linked to the thought
of the word as a whole, and the word becomes an effective stimulus for
arousing the series of letter movements.
[Illustration: Fig. 62.--Learning a word-habit in typewriting. At first,
besides the stimulus of the word, "and" it is necessary also to have the
stimulus "a" in order to arouse the response of writing a, the stimulus "n"
in order to arouse the writing of n, and the stimulus "d" in order to arouse
the writing of d. Yet the stimulus "and" is present all this time, and its weak
linkages with the writing movements are used and strengthened, so that
finally it is sufficient, by itself, to arouse the whole series of writing
movements.]

CHAPTER XVI

381

Many other instances of learning can be worked out in the same way, and
there seems to be no difficulty in {413} interpreting any of them by the law
of combination. Even "negative adaptation" can possibly be interpreted as
an instance of substitute response; some slight and easy response may be
substituted for the avoiding reaction or the attentive reaction that an
unimportant stimulus at first arouses, these reactions being rather a
nuisance when they are unnecessary. On the whole, the law of combination
seems to fill the bill very well. It explains what the law of exercise left
unexplained. It always brings in the law of exercise as an ally, and, in
explaining substitute response, it brings in the law of effect, which however,
as we saw before, may be a sub-law under the law of exercise. These two,
or three laws, taken together, give an adequate analysis of the whole
process of learning.
The Law of Combination in Recall
Unitary response to multiple stimuli is important in recall as well as in
learning. The clearest case of this is afforded by "controlled association".
[Footnote: See p. 381.]
In an opposites test, the response to the stimulus word "long" is aroused
partly by this stimulus word, and partly by the "mental set" for opposites.
There are two lines of influence, converging upon the response,
"long--short" (of which only the word "short" may be spoken): one line
from the stimulus word "long", and the other from the mental set for pairs
of opposite words. The mental set for opposites tends to arouse any pair of
opposites; the word "long" tends to arouse any previously observed group
of words of which "long" is a part. The mental set, an internal stimulus, and
the stimulus word coming from outside, converge or combine to arouse one
particular response.
The mental set for adding has previously exercised {414} linkages with the
responses composing the addition table, while the mental set for
multiplication has linkages with the responses composing the multiplication
table. When the set for adding is active, a pair of numbers, seen or heard,
together with this internal stimulus of the mental set, arouses the response

CHAPTER XVI

382

that gives the sum; but when the multiplying set is active, the same pair of
numbers gives the product as the response. All thinking towards any goal is
a similar instance of the law of combination.
The Laws of Learning in Terms of the Neurone
We have good evidence that the brain is concerned in learning and
retention. Loss of some of the cortex through injury often brings loss of
learned reactions, and the kind of reactions lost differs with the part of the
cortex affected. Injury in the occipital lobe brings loss of visual knowledge,
and injury in the neighborhood of the auditory sense-center brings loss of
auditory knowledge.
Injury to the retina or optic nerve, occurring early in life, results in an
under-development of the cortex in the occipital lobe. The nerve cells
remain small and their dendrites few and meager, because they have not
received their normal amount of exercise through stimulation from the eye.
Exercise, then, has the same general effect on neurones that it has on
muscles; it causes them to grow and it probably also improves their
internal condition so that they act more readily and more strongly. The
growth, in the cortex, of dendrites and of the end-brushes of axons that
interlace with the dendrites, must improve the synapses between one
neurone and another, and thus make better conduction paths between one
part of the cortex and another, and also between the cortex and the lower
sensory and motor centers.
The law of exercise has thus a very definite meaning when {415} translated
into neural terms. It means that the synapses between stimulus and
response are so improved, when traversed by nerve currents in the making
of a reaction, that nerve currents can get across them more easily the next
time.
[Illustration: Fig. 63.--The law of exercise in terms of synapse. A nerve
current is supposed to pass along this pair of neurones in the direction of
the arrow. Every time it passes, it exercises the end-brush and dendrites at

CHAPTER XVI

383

the synapse (for the "passage of a nerve current" really means activity on
the part of the neurones through which it passes), and the after-effect of
this exercise is growth of the exercised parts, and consequent improvement
of the synapse as a linkage between one neurone and the other. Repeated
exercise may probably bring a synapse from a very loose condition to a
state of close interweaving and excellent power of transmitting the nerve
current.]
The more a synapse is used, the better synapse it becomes, and the better
linkage it provides between some stimulus and some response. The cortex is
the place where linkages are made in the process of learning, and it is there
also that forgetting, or atrophy, takes place through disuse. Exercise makes
a synapse closer, disuse lets it relapse into a loose and poorly conducting
state.
The law of combination, also, is readily translated into {416} neural terms.
The "pre-existing loose linkages" which it assumed to exist undoubtedly do
exist in the form of "association fibers" extending in vast numbers from any
one part of the cortex to many other parts. These fibers are provided by
native constitution, but probably terminate rather loosely in the cortex until
exercise has developed them. They may be compared to telephone wires
laid down in the cables through the streets and extending into the houses,
but still requiring a little fine work to attach them properly to the telephone
instruments.
[Illustration: Fig. 64.--Diagram for the learning of the name of an object,
transformed into a neural diagram. The vocal movement of saying the
name is made in response to the auditory stimulus of hearing the name, but
when the neurone in the "speech center" is thus made active, it takes up
current also from the axon that reaches it from the visual center, even
though the synapse between this axon and the speech neurone is far from
close. This particular synapse between the visual and the speech centers,
being thus exercised, is left in an improved condition. Each neurone in the
diagram represents hundreds in the brain, for brain activities are carried
on by companies and regiments of neurones. (Figure text: object seen,
visual center name heard, auditory center, speech center, name spoken)]

CHAPTER XVI

384

The diagrams illustrating different cases under the law of combination can
easily be perfected into neural diagrams, though, to be sure, any diagram is
ultra-simple as compared with the great number of neurones that take part
in even a simple reaction.
The reader will be curious to know now much of this neural interpretation
of our psychological laws is observed fact, and how much speculation.
Well, we cannot as yet {417} observe the brain mechanism in actual
operation--not in any detail. We have good evidence, as already outlined,
for growth of the neurones and their branches through exercise.
[Illustration: Fig. 65.--Control, in multiplying. The visual stimulus of two
numbers in a little column, has preformed linkages both with the adding
response and with that of multiplying. But the mental set for adding being
inactive at the moment, and that for multiplying active (because the subject
means to multiply), the multiplying response is facilitated.]
We have perfectly good evidence of the law of "unitary response to multiple
stimuli" from the physiological study of reflex action; and we have perfectly
good anatomical evidence of the convergence and divergence of neural
paths of connection, as required by the law of combination. The association
fibers extending from one part to another of the cortex are an anatomical
fact. [Footnote: See p. 56.] Facilitation is a fact, and that means that a
stimulus which could not of itself arouse a response can coöperate with
another stimulus that has a direct connection with that response, and
reinforce its effect. In short, all the elements required for a neural law of
combination are known facts, and the only matter of doubt is whether we
have built these elements together aright in our interpretation. It is not pure
speculation, by any means.
{418}
EXERCISES
1. Outline the chapter, in the form of a list of laws and sub-laws.

CHAPTER XVI

385

2. Review the instances of learning cited in Chapters XIII-XV, and examine
whether they are covered and sufficiently accounted for by the general laws
given in the present chapter.
3. Draw diagrams, like those given in this chapter, for the simpler cases, at
least, that you have considered in question 2.
4. Show that response by analogy is important in the development of
language. Consider metaphor, for example, and slang, and the using of an
old word in a new sense (as in the case of 'rail-road').
REFERENCES
William James devoted much thought to the problem of the mechanism of
learning, habit, association, etc., and his conclusions are set forth in
several passages in his Principles of Psychology, 1890, Vol. I, pp. 104-112,
554-594, and Vol. II, pp. 578-592.
Another serious consideration of the matter is given by William McDougall
in his Physiological Psychology, 1905, Chapters VII and VIII.
See also Thorndike's Educational Psychology, Briefer Course, 1914,

Chapter VI.

386

Chapter VI.
On the whole subject of association, see Howard C. Warren, A History of
the Association Psychology, 1921.
{419}

CHAPTER XVII

387

CHAPTER XVII
PERCEPTION
MENTAL LIFE CONSISTS LARGELY IN THE DISCOVERY OF FACTS
NEW TO THE INDIVIDUAL, AND IN THE RE-DISCOVERY OF FACTS
PREVIOUSLY OBSERVED
You will remember the case of John Doe, who was brought before us for
judgment on his behavior, as to how far it was native and how far acquired.
We have since that time been occupied in hearing evidence on the case, and
after mature consideration have reached a decision which we may
formulate as follows: that this man's behavior is primarily instinctive or
native, but that new attachments of stimulus and response, and new
combinations of responses, acquired in the process of learning, have
furnished him with such an assortment of habits and skilled acts of all sorts
that we can scarcely identify any longer the native reactions out of which
his whole behavior is built. That decision being reached, we are still not
ready to turn the prisoner loose, but wish to keep him under observation for
a while longer, in order to see what use he makes of this vast stock of native
and acquired reactions. We wish to know how an individual, so equipped,
behaves from day to day, and meets the exigencies of life. Such, in brief, is
the task we have still before us.
Accordingly, one fine morning we enter our prisoner's sleeping quarters,
and find him, for once, making no use of his acquired reactions, as far as
we can see, and utilizing but a small fraction of his native reactions. He is,
in short, asleep. We ring a bell, and he stirs uneasily. We {420} ring again,
and he opens his eyes sleepily upon the bell, then spies us and sits bolt
upright in bed. "Well, what . . ." He throws into action a part of his rather
colorful vocabulary. He evidently sees our intrusion in an unfavorable light
at first, but soon relaxes a little and "supposes he must be late for
breakfast". Seeing our stenographer taking down his remarks, he is puzzled
for a moment, then breaks into a loud laugh, and cries out, "Oh! This is
some more psychology. Well, go as far as you like. It must have been your
bell I heard in my dream just now, when I thought I saw a lot of cannibals

CHAPTER XVII

388

beating the tom-tom". Having now obtained sufficient data for quite a
lengthy discussion, we retire to our staff room and deliberate upon these
manifestations.
"The man perceives", we agree. "By the use of his eyes and ears he
discovered facts, and interpreted them in the light of his previous
experience. In knowing the facts, he also got adjusted to them and governed
his actions by them. But notice--a curious thing--how his perception of the
facts progressed by stages from the vague and erroneous to the correct and
precise. Before he was fully awake, he mistook the bell for a tom-tom; then,
more fully aroused, he knew the bell. Ourselves he first saw as mere
wanton intruders, then as cheerful friends who wished him no ill; finally he
saw us in our true character as investigators of his behavior."
Following our man through the day's work and recreation, we find a large
share of his mental activity to consist in the perception of facts. We find
that he makes use of the facts, adjusting himself to them and also shaping
them to suit himself. His actions are governed by the facts perceived, at the
same time that they are governed by his own desires. Ascertaining how the
facts stand, he takes a hand and manipulates them. He is constantly coming
to know {421} fresh facts, and constantly doing something new with them.
His life is a voyage of discovery, and at the same time a career of invention.
Discovery and invention!--high-sounding words, still they are applicable to
everyday life. The facts observed may not be absolutely new, but at least
they have always to be verified afresh, since action needs always to take
account of present reality. The invention may be very limited in scope, but
seldom does an hour pass that does not call for doing something a little out
of the ordinary, so as to escape from a fresh trap or pluck fruit from a
newly discovered bough. All of our remaining chapters might, with a little
forcing, be pigeonholed under these two great heads. Discovery takes its
start with the child's instinctive exploratory activity, and invention with his
manipulation, and these two tendencies, perhaps at bottom one, remain
closely interlinked throughout.
Some Definitions

CHAPTER XVII

389

Perception is the culmination of the process of discovery. Discovery usually
requires exploration, a search for facts; and it requires attention, which
amounts to finding the facts or getting them effectively presented; and
perception then consists in knowing the presented facts.
When the facts are presented to the senses, we speak of "sense perception".
If they are presented to the eye, we speak of visual perception; if to the ear,
of auditory perception, etc. But when we speak of a fact as being
"presented" to the eye or ear, we do not necessarily mean that it is directly
and completely presented; it may only be indicated. We may have before
the eyes simply a sign of some fact, but perceive the fact which is the
meaning of the sign. We look out of the window and "see it is wet to-day",
though wetness is something to be felt rather than seen; {422} having
previously observed how wet ground looks, we now respond promptly to
the visual appearance by knowing the indicated state of affairs. In the same
way, we say that we "hear the street car", though a street car, we must
admit, is not essentially a noise. What we hear, in strictness, is a noise, but
we respond to the noise by perceiving the presence of the car. Responding
to a stimulus presented to one sense by perceiving a fact which could only
be directly presented to another sense is exemplified also by such common
expressions as that the stone "looks heavy", or that the bell "sounds
cracked". or that the jar of fruit "smells sour". Sense perception, then, is
responding to a stimulus by knowing some fact indicated by it either
directly or indirectly. Perception that is not sense perception occurs when
the fact perceived is not even indirectly presented to the senses at the
moment. The fact is then presented by recall; yet the fact in question is not
recalled. Recall not only gives you facts previously perceived, but may
provide the data, the stimulus, for fresh perception. Putting together two
recalled facts, you may perceive a further fact not previously known.
Remembering that you took your umbrella to the office this morning in the
rain, that it was fine when you left the office, and that you certainly did not
have the umbrella when you reached home, you perceive that you must
have left it at the office. Reading in the paper of preparations for another
polar expedition, and remembering that both poles have already been
discovered, you perceive that there is something more in polar exploration
than the mere race for the pole. Perception of this sort amounts to

CHAPTER XVII

390

"reasoning", and will be fully considered in another chapter, while here we
shall focus our attention on sense perception.
{423}
The Difference Between Perception and Sensation
If sense perception is a response to a sensory stimulus, so is sensation, and
the question arises whether there is any genuine difference between these
two. In the instance of "hearing the street car", the difference is fairly
obvious; hearing the noise is sensation, while knowing the street car to be
there is perception.
Sensation is the first response aroused by a stimulus, or at least the first
response that is conscious. Perception is a second response, following the
sensation, and being properly a direct response to the sensation, and only
an indirect response to the physical stimulus. The chain of events is:
stimulus, response of the sense organ and sensory nerve, first cortical
response which is sensation, second cortical response which is perception.
Conscious sensation is the response of the part of the cortex that first
receives the nerve current from the sense organ stimulated, the response of
the "sensory area" for the particular sense stimulated. When the eye is
stimulated, the nerve current first reaches a small portion of the occipital
lobe, called the visual sensory area. Without that area there is no visual
sensation. When the ear is stimulated, the conscious sensation is the
response of a small portion of the temporal lobe called the auditory sensory
area, and without this area there is no auditory sensation. But the presence
of the visual sensory area is not enough to give the visual perception of
facts, nor is the presence of the auditory sensory area enough to give
auditory perception. The cortical regions adjacent to the sensory areas are
necessary for perception; if they are destroyed, the individual may still see,
but not know the objects seen; or may still hear, but not recognize the
words or tunes that he hears. If the cortical area destroyed is in the parietal
{424} lobe, adjacent to the sensory area for the cutaneous and kinesthetic
senses, he may still "feel" objects, but without being able to distinguish an

CHAPTER XVII

391

apple from a lump of coal, or a folded newspaper from a tin pail.
Sense perception, then, is a response of areas adjacent to the sensory
areas, and this response is aroused by nerve currents coming along
"association fibers" from the sensory areas which are first aroused from
the sense organs.
The whole chain of events, from the time the stimulus reaches the sense
organ to the time the fact is perceived, occupies only a fifth or even a tenth
of a second in simple cases, and the interval between the beginning of the
sensation to the beginning of the perception is not over a twentieth when
the fact is easily perceived. Since the sensation usually lasts for longer than
this, it overlaps the perception in time, and the two conscious responses are
so blendedthat it is difficult or impossible for introspection to separate
them.
But when an unusual fact is presented, perception may lag, though
sensation occurs promptly. We may be baffled and confused for an instant,
and have sensation without any definite perception; or, more often, we
make a rapid series of trial and error perceptions. In one instance, a noise
was first heard as distant thunder, and then, correctly, as somebody
walking on the floor above. In another case, a faint sound was first taken
for a bird singing, then for a distant locomotive whistle, and finally for
what it was, the tinny noise of a piece of metal carried in the hand and
brushing against the overcoat as the person walked; this series occupied
not over five seconds. On touching an object in the dark, you may feel it as
one thing and another till some response is aroused that fits the known
situation and so satisfies you. Such trial and error perception can be
observed very frequently if one is on the watch for {425} psychological
curiosities; and it justifies the distinction between sensation and
perception, since the sensation remains virtually unchanged while
perception changes.
Another sort of shifting perception is seen in looking steadily at the
"ambiguous figures" which were considered in the chapter on attention, the
cube, staircase, and others; and the "dot figures" belong here as well.

CHAPTER XVII

392

[Footnote: See p. 252.] In these cases the stimulus arouses two or more
different perceptions, alternately, while the sensation remains almost or
quite unchanged.
Perception and Image
The experiment with ambiguous figures also gives an answer to the
question whether perception consists in the addition of recalled memory
images to the sensations aroused by the present stimulus. If that were so,
you should, when you see the upper side of the flight of stairs, see them as
wooden stairs or stone stairs, as carpeted or varnished, with shadows on
them such as appear on a real flight of stairs, with a railing, or with some
other addition of a similar nature; and, when the appearance changes to
that of the under side of a flight of stairs, the colors, shadows, etc., should
change as well. The usual report is that no such addition can be detected,
and that the subject sees no filling-in of the picture, but simply the bare
lines--only that they seem at one moment to be the bare outline of the upper
side, and at another moment an equally bare outline of the lower side, of a
flight of stairs.
So again, when you "hear the street car", you do not ordinarily, to judge
from the reports of people who have been asked, get any visual or
kinesthetic image of the car, but you simply know the car is there. You will
quite {426} possibly get some such image, if you dwell on the fact of the
car's being there, just as some persons, in talking to a friend over the
telephone, have a visual image of the friend. There is no reason why such
images should not be aroused, but the question is whether they are
essential to perception of the fact, and whether they occur before or after
the fact is perceived. Often they do not occur, and often, when they do
occur, they follow the perception of the fact, being aroused by that
perception and not constituting it.
Sometimes images are certainly aroused during the perception of a fact,
and, blending with the present rather vague sensation, add color and filling
to the picture.

CHAPTER XVII

393

Here is an instance of this which I once observed in myself, in spite of the
infrequency of my visual images. Approaching a house through a wide field
one winter night, and seeing a lamp shining out of a window towards me, I
seemed to see the yellowish light touching the high spots in the grass
around. I was surprised that the lamp should carry so far, and the next
instant saw that the light spots on the ground were small patches of snow,
lighted only from the clouded sky; and at this the yellow tinge of the spots
vanished. I must have read the yellow color into them to fit the lamplight.
The yellow was an image blending with the actual sensation. Colors tacked
on to a seen object in this way are sometimes called "memory colors".
When this instance is considered carefully, however, it does not by any
means indicate that the image produced the perception. I responded to the
pair of stimuli--lamp shining towards me and light spots around me--by
perceiving the spots as lighted by the lamp; and the color followed suit. I
next saw the spots as snow, and the color vanished. It was a case of trial
and error perception, with color images conforming to the perception.
Perception does not essentially consist in the recall of {427} images, but is
a different sort of response--what sort, we have still to consider.
Perception and Motor Reaction
Possibly, we may surmise, perception is a motor response, completely
executed or perhaps merely incipient, or at least a readiness for a certain
motor response. This guess is not quite so wild as our customary sharp
distinction between knowing and doing might lead us to think. When we say
that reacting to a thing in a motor way is quite different from merely seeing
the thing, we forget how likely the child is to do something with any object
as soon as he sees what it is. We forget also how common it is for a person,
in silently reading a word--which is perceiving the word--to whisper it or at
least move his lips. To be sure, persons who read a great deal usually get
over this habit, as the child more and more inhibits his motor response to
many seen objects. But may it not be that the motor response is simply
reduced to a minimum? Or, still better, may it not be that perceiving an
object amounts to getting ready to do something with it? May not seeing a

CHAPTER XVII

394

word always be a getting ready to say it, even if no actual movement of the
vocal organs occurs? May not seeing an orange consist in getting ready to
take it, peel it, and eat it? May not perceiving our friend amount to the
same thing as getting ready to behave in a friendly manner, and perceiving
our enemy amount to the same thing as getting on our guard against him?
According to this view, perception would be a response that adjusted the
perceiver to the fact perceived, and made him ready to do something
appropriate.
In spite of the attractiveness of this theory of perception, it is probably not
the real essence of the matter. Just as perception may change while
sensation remains the same, so there may be a hesitation between two
motor responses {428} to an object, without any change in the way it is
perceived; and just as a block may occur between sensation and
perception, so also may one occur between perception of a fact and the
motor response. In other words, perception of a fact may not spell complete
readiness to act upon it. The best example of this is afforded again by cases
of localized brain injuries.
It happens, in motor aphasia, that the subject hears and understands a
spoken word--fully perceives it--and yet cannot pronounce it himself. And
at that, there need be no paralysis of the speech organs. The brain injury
has affected the motor speech-coördinating machinery, and deprived the
individual of the power to get ready for speaking a word, even though he
perceives it.
Analogous disabilities occur in respect to other movements. It may happen,
through injury somewhere near the motor area, though not precisely in that
area, that one who clearly perceives a seen object is still quite incapable of
handling it. He knows the object, and he knows in an abstract way what to
do with it, but how to go about it he cannot remember. This type of
disturbance is called "motor apraxia", and, like motor aphasia, it proves
that there is a preparation that follows perception and still precedes actual
movement. Paralysis of the motor area is different; then, the subject both
perceives the object, and gets all ready to act upon it; only, the movement
does not occur.

CHAPTER XVII

395

The truth seems to be that a series of four responses occurs in the brain, in
the process of making a skilled movement dealing with a perceived object.
First, sensation; second, perception of the object; third, coördinating
preparation for the act; and fourth, execution of the act by the motor area
arousing the lower motor centers and through them the muscles. The first
response is like receiving signals {429} or code messages; the second
deciphers the messages and knows the state of affairs; the third plans
action; and the fourth sends out orders to the agents that perform the
action.
The distinction between perception and preparation for action is sometimes
rather difficult to draw. The twelve o'clock whistle means time to drop your
tools, and it is hard to draw a line between knowing the fact and beginning
the act. On the other hand, when my watch tells me the noon hour is almost
over, some little time may be required before I get into motion. Where there
is no block or inhibition, the chain of responses runs off with such speed as
to seem a single response. But a block may occur at any one of several
places. It may check the actual movement, as in the "delayed reaction",
[Footnote: See p. 76.] and in cases where we itch to do something yet
check ourselves. Here the preparation occurs, but the execution is checked.
Sometimes the block occurs between perception and preparation, when we
know a fact but find nothing to do about it or hesitate between two ways of
acting. Sometimes, also, the block occurs between sensation and
perception; a sudden loud noise will sometimes throw a person into a
momentary state of confusion during which he is unable to recognize the
noise.
Blocking of response at different stages can be illustrated very well in the
case of anger. The irritating stimulus gives a prompt fighting reaction,
unless checked at some stage. When the check prevents me from actually
striking the offending person, but leaves me clenching my fist and gnashing
my teeth, the chain of responses has evidently gone as far as readiness for
action, and been blocked between that stage and the stage of execution.
Probably the inhibitory influence here is anticipation of bad consequences.
The block may occur one stage further back, when I say to myself that
{430} I mustn't let myself get "all riled up" since it will spoil my morning's

CHAPTER XVII

396

work; here, instead of substituting the clenched fist for actual fighting, I
substitute a bored or contemptuous attitude for the pugnacious attitude. All
this time I still am conscious of the offense done me. But suppose something
leads me to try to look at the other person's behavior from his own point of
view--then I perceive it in a different light, and it may no longer appear a
personal offense to myself. I here get a substitute perception.
The process of blocking and substituting is the same process that we have
seen in trial and error.[Footnote: See p. 408.] The response proving
unsatisfactory, or promising to be unsatisfactory, is checked and a
substitute response found. Other elements in the situation get a chance to
exert their influence on the reaction. If perception of a fact were absolutely
the same as preparing a motor act, we could not look over the situation,
perceiving one fact after another, and letting our adjustment for action
depend on the total situation instead of on the separate facts successively
observed; nor could we perceive one fact while preparing the motor
response to another fact, as is actually done in telegraphy, typewriting,
reading aloud, and many other sorts of skilled action. In reading aloud, the
eyes on the page keep well ahead of the voice; while one word is being
pronounced, the next word is being prepared for pronouncing, and words
still further ahead are in process of being perceived.
We conclude, accordingly, that perception of an object is not absolutely the
same thing as motor response to the object, nor even as motor readiness to
respond, although the transition from perception to motor readiness may be
so quick that the whole reaction seems a unit. In reality, perception of the
object precedes the motor adjustment, and is one factor in determining that
adjustment.
{431}
What Sort of Response, Then, Is Perception?
We can say this, that perception is knowing the fact, as distinguished from
readiness to act. We can say that perception is an adjustment to facts as
they are, while motor adjustment is a preparation for changing the facts.

CHAPTER XVII

397

Perception does not alter the facts, but takes them as they are; movement
alters the facts or produces new facts. We can say that perception comes in
between sensation and motor preparation. But none of these statements is
quite enough to satisfy us, if we wish to know something of the machinery of
perception. What is the stimulus in perception, and what is the nature of the
response?
It takes a collection of stimuli to arouse a perception. This collection is at
the same time a selection from among the whole mass of sensory stimuli
acting at any moment on the individual. Perception is thus a fine example
both of the "law of selection" and of the "law of combination". [Footnote:
See pp. 256, 263.] Perception is at once a combining response and an
isolating response.
We perceive a face--that means that we take the face as a unit, or make a
unitary response to the multiple stimuli coming from the face. At the same
time, in perceiving the face, we isolate it from its background, or disregard
the numerous other stimuli that are simultaneously acting upon us. If we
proceed to examine the face in detail, we may isolate the nose and perceive
that as a whole. We might isolate still further and perceive a freckle on the
nose, taking that as a whole, or even observing separately its location,
diameter, depth of pigmentation, etc. Even if we went so far as to observe a
single speck of dust on the skin, in which case isolation would about reach
its maximum, combination would still stay in the game, for we should either
note {432} the location of the speck--which would involve relating it to
some part of the face--or we should contrast it with the color of the skin, or
in some similar way take the single stimulus in relation with other present
stimuli. Perception is always a unitary response to an isolated assemblage
of stimuli.
Consider these two opposite extremes: taking in the general effect of the
view from a mountain top, and perceiving the prick of a pin. In the first
case, combination is very much in evidence, but where is the isolation?
There is isolation, since internal bodily sensations, and very likely auditory
and olfactory sensations as well, are present but do not enter into the view.
In the case of the pin prick, isolation is evident, but where does

CHAPTER XVII

398

combination come in? It would not come into the mere reflex of pulling the
hand away, but perceiving the pin means something more than reflex
action. It means locating the sensation, or noticing its quality or duration
or something of that sort, and so contrasting it with other sensations or
relating it to them in some way. To perceive one stimulus as related to
another is to respond to both together.
But in describing perception as a unitary response to an isolated
assemblage of stimuli, we have not differentiated it from a motor response,
for that, too, is often aroused by a few (or many) stimuli acting together.
What more can we say? In neural terms, we can only repeat what was said
before, that perception is the next response after sensation, being a direct
response to a certain combination of sensations, and being in its turn the
stimulus, or part of the stimulus, that arouses a motor adjustment, as it may
also be the stimulus to recall of previously observed facts. In more
psychological terms, we can say that sense perception is closely bound up
with sensation, so that we seem to see the fact, or hear it, etc.; we perceive
it as present to the {433} senses, rather than as thought of or as
anticipated. Motor readiness is anticipatory, perception definitely
objective. Motor readiness is an adjustment for something yet to be, while
perception is an adjustment to something already present.
Practised Perception
A fact perceived for the first time must needs be attended to, in order that it
may be perceived. That is, the first and original perception of a fact is a
highly conscious response. But the perception of a fact, like any other form
of response, becomes easy with practice; the linkage of stimulus and
response becomes stronger and stronger, till finally the stimulus arouses
the perceptive response almost automatically. The familiar fact is perceived
without receiving close attention, or even without receiving any attention.
While your attention is absorbed in reading or thinking, you may respond
to the sight of the flower in a vase on your table by knowing it to be there,
you may respond to the noise of the passing street car by knowing what that
is, and you may respond to the contact of your foot with the leg of the chair
by dimly knowing what that object is. A great deal of this inattentive

CHAPTER XVII

399

perception of familiar facts is always going on. Aside from sensation and
from some of the reflexes, the perception of familiar facts is the most
practised and the easiest of all responses.
The laws and sub-laws of learning apply perfectly to practised perception.
The more frequently, the more recently, and the more intensely a given fact
has been perceived, the more readily is it perceived again. The more a
given fact is in line with the mental set of the moment, the more readily is it
perceived. Sometimes it is so readily perceived that we think we see it when
it isn't there. If you are hunting for a lost knife, anything remotely
resembling {434} a knife will catch your eye and for an instant be
perceived as the missing object.
The principle of substitute stimulus applies remarkably well to practised
perception. The first time you perceive an object, you observe it attentively,
and expose your perceptive apparatus to the whole collection of stimuli that
the object sends your way. The next time you need not observe it so
attentively, for you make the same perceptive response to a part of the
original collection of stimuli. The response originally aroused by the whole
collection of stimuli is later aroused by a fraction of this collection. The
stimulus may be reduced considerably, and still arouse the perception of
the same fact. A child is making the acquaintance of the dog. The dog
barks, and the child watches the performance. He not only sees the dog,
and hears the noise, but he sees the dog bark, and hears the dog bark. This
original perception is a unitary response to the combination of sight and
sound. Thereafter he does not require both stimuli at once, but, when he
hears this noise, he perceives the dog barking, and when he sees the dog he
sees an object that can bark. In the same way, a thousand objects which
furnish stimuli to more than one of the senses are perceived as units, and,
later, need only act on a single sense to be known.
The stimulus, instead of being reduced, may be modified, and still arouse
the same perception as before. A face appears in the baby's field of view,
but away across the room so that it is a very small object, visually. The face
approaches and gradually becomes a larger visual object, and the light and
shadow upon it change from moment to moment, but it remains nearly

CHAPTER XVII

400

enough the same to arouse essentially the same perception in the child. He
comes to know the face at various distances and angles and under various
lights.
{435}
Again, the child holds a block in his hands, and looks at it square on, so
that it is really a rectangle in his field of view. He turns it slightly, and now
it is no longer visually a rectangle, but an oblique parallelogram. But the
change is not enough to abolish the first perception; he sees it as the same
object as before. By dint of many such experiences, we see a book cover or
a door as a rectangle, no matter at what angle we may view it, and we
know a circle for a circle even though at most angles it is really an ellipse
in the field of view. A large share of practised perceptions belong under the
head of "response by analogy",[Footnote: See p. 406.] since they consist in
making the same response to the present stimulus that has previously been
made to a similar but not identical stimulus. If every modified stimulus gave
a new and different perception, it would be a slow job getting acquainted
with the world. A thing is never twice the same, as a collection of stimuli,
and yet, within wide limits, it is always perceived as the same thing.
Corrected Perception
Response by analogy, however, often leads us astray, in making us perceive
a new object as essentially the same as something already familiar. First
impressions of a new object or acquaintance often need revision, because
they do not work well. They do not work well because they are rough and
ready, taking the object in the lump, with scant attention to details which
may prove to be important. It is easy to follow the law of combination and
respond to a whole collection of stimuli, but to break up the collection and
isolate out of it a smaller collection to respond to--that is something we will
not do unless forced to it. Isolation and discrimination are uphill work.
When they occur, it is {436} because the rough and ready response has
proved unsatisfactory,

CHAPTER XVII

401

Substitute response is the big factor in corrected perception, as substitute
stimulus is in practised perception. When our first perception of an object
gets us into difficulties, then we are forced to attend more closely and find
something in the object that can serve as the stimulus to a better response.
This is the process by which we isolate, analyze, discriminate.
Our old friend, the white rat, learned to enter a door only if it bore a yellow
sign. [Footnote: See p. 304.] It was uphill work for him, hundreds of trials
being required before the discriminating response was established; but he
learned it finally. At the outset, a door was a door to the rat, and responded
to as such, without regard to the sign. Whenever he entered a door without
the sign, he got a shock, and scurried back; and before venturing again he
looked all around, seeking, we may say, a stimulus to guide him;
incidentally, he looked at the yellow disk, and this stimulus, though
inconspicuous and feeble to a rat, finally got linked up with the entering
response. The response of first finding and then following the sign had been
substituted for the original response of simply entering.
In the same way the newly hatched chick, which at first pecks at all small
objects, caterpillars included, learns to discriminate against caterpillars. In
a practical sense, the chick, like the rat, learns to distinguish between
stimuli that at first aroused the same response. It is in the same way that
the human being is driven to discriminate and attend to details. He is
brought to a halt by the poor results of his first rough and ready
perception, scans the situation, isolates some detail and, finding response
to this detail to bring satisfactory results, substitutes response to this {437}
detail for his first undiscriminating response to the whole object.
The child at first treats gloves as alike, whether rights or lefts, but thus gets
into trouble, and is driven to look at them more sharply till he perceives the
special characteristics of rights and lefts. He could not describe the
difference, to be sure, but he sees it well enough for his purposes. If you ask
an older person to describe this difference, and rally him on his inability to
do so, he is thus driven to lay them side by side and study out the difference
still more precisely.

CHAPTER XVII

402

The average non-mechanical person, on acquiring an automobile, takes it
as a gift of the gods, a big total thing, simply to sit in and go. He soon
learns certain parts that he must deal with, but most of the works remain a
mystery to him. Then something goes wrong, and he gets out to look. "What
do you suppose this thing is here? I never noticed it before". Tire trouble
teaches him about wheels, engine trouble leads him to know the engine,
ignition trouble may lead him to notice certain wires and binding-posts that
were too inconspicuous at first to attract his attention. A car becomes to
him a thing with a hundred well-known parts, instead of just one big
totality.
Blocked response, closer examination, new stimulus isolated that gives
satisfactory response--such is, typically, the process of analytic perception.
Sensory Data Serving as Signs of Various Sorts of Fact
Among facts perceived, we may list things and events, and their qualities
and relations. Under "things" we here include persons and animals and
everything that would ordinarily be called an "object". Under "events", we
include movement, change and happenings of all sorts. Under {438}
"qualities" we may include everything that can be discovered in a thing or
event taken by itself, and under "relations" anything that can be discovered
by comparing or contrasting two things or events. The "groups" that we
have several times spoken of as being observed would here be included
under "things"; but the strict logic of the whole classification is not a
matter of importance, as the only object in view is to call attention to the
great variety of facts that are perceived.
Now the question arises, by what signs or indications these various facts
are perceived. Often, as we have seen, the fact is by no means fully
presented to the senses, and often it is far from easy for the perceiver to tell
on what signs the perception depends. He knows the fact, but how he knows
it he cannot tell. A large part of the very extensive experimental
investigation of perception has been concerned with this problem of
ferreting out the signs on which the various perceptions are based, the
precise stimuli to which the perceptions respond.

CHAPTER XVII

403

For example, we can examine objects by feeling of them with a stick held in
the hand, and thus perceive their roughness or smoothness; but how do we
sense these facts? It seems to us as if we felt them with the end of the stick,
but that is absurd, since there are no sense organs in the stick. It must be
that we perceive the roughness by means of sensations arising in the hand
and arm, but to identify these sensations is a much harder task than to
discover the objective fact of roughness.
Again, we distinguish the tones of two musical instruments by aid of their
overtones, but elaborate experiments were required to prove this, since
ordinarily we do not distinguish the overtones, and could simply say that
the instruments sounded differently, and let it go at that.
Once more, consider our ability to perceive time intervals; {439} and to
distinguish an interval of a second from one of a second and a quarter.
How in the world can any one perceive time? Time is no force that could
conceivably act as a stimulus to a sense organ. It must be some change or
process that is the stimulus and that serves as the indication of duration.
Most likely, it is some muscular or internal bodily change, but none of the
more precise suggestions that have been offered square with all the facts. It
cannot be the movements of breathing that give us our perception of time,
for we can hold our breath and still distinguish one short interval from
another. It cannot be the heart beat, for we can beat time in a rhythm that
cuts across the rate of the heart beat. When a singer is accompanying
himself on the piano, keeping good time in spite of the fact that the notes
are uneven in length, and meanwhile using his feet on the pedals, what has
he got left to beat time with? No one has located the stimulus to which
accurate time perception responds, though, in a general way, we are pretty
sure that change of one sort or another is the datum. With longer intervals,
from a minute to several hours, the sign of duration is probably the amount
happening in the interval, or else such progressive bodily changes as
hunger and fatigue.
The Perception of Space

CHAPTER XVII

404

Stimuli for the perception of location are provided by all the senses. We
perceive a taste as in the mouth, thirst as in the throat, hunger pangs as in
the stomach. To a familiar odor we may respond by knowing the odorous
substance to be close at hand. To stimulation of the semi-circular canals we
respond by knowing the direction in which we are being turned.
We respond to sounds by knowing the direction from which they come, and
the distance from which they come; {440} but it must be confessed that we
are liable to gross errors here. To perceive the distance of the sounding
body we have to be familiar with the sound at various distances, and our
perception of distance is based on this knowledge. As to the direction of
sound, experiment has proved that we do little more than distinguish
between right and left; we are all at sea in attempting to distinguish front
from back or up from down. Apparently the only datum we have to go by is
the different stimulation given the two ears according as the sound comes
from the right or left.
The remaining senses, the cutaneous, the kinesthetic and the visual, afford
much fuller data for the perception of spatial facts. Movements of the limbs
are perceived quite accurately as to direction and extent.
A cutaneous stimulus is located with fair exactness, though much less
exactly on such regions as the back than on the hands or lips. If you were
asked how you distinguished one point from another on the back of the
hand, you could only answer that they felt different; and if you were further
asked whether a pencil point applied to the two points of the skin did not
feel the same, you would have to acknowledge that it did feel the same,
except that it was felt in a different place. In other words, you would not be
able to identify the exact data on which your perception of cutaneous
position is based. Science has done no better, but has simply given the
name of "local sign" to the unanalyzed sensory datum that gives a
knowledge of the point stimulated.
In handling an object, as also in walking and many other movements, the
cutaneous and kinesthetic senses are stimulated together, and between
them furnish data for the perception of many spatial facts, such as the

CHAPTER XVII

405

shape of an object examined by the hand. The spherical shape is certainly
better perceived by this combination of tactile and kinesthetic {441}
sensations than by vision, and the same is probably true of many similar
spatial facts. That is, when we see a round ball, the visual stimulus is a
substitute for the tactile and cutaneous stimuli that originally had most to
do with arousing this perception.
In part by this route of the substitute stimulus, the sense of vision comes to
arouse almost all sorts of spatial perceptions. Of itself, the retina has "local
sign" since we can tell where in the field of view a seen object is, i.e., in
what direction it is from us. This visual perception of location is so much
more exact than the cutaneous or kinesthetic that it cannot possibly be
derived from them; and the same is true of the visual perception of
difference in length, which is one of the most accurate forms of perception.
The retina must of itself afford very complete stimuli for the perception of
location and size, as far as these are confined to the two dimensions,
up-down and right-left. But, when you stop to think, it seems impossible
that the retina should afford any data for perceiving distance in the
front-back dimension.
The retina is a screen, and the stimulus that it gets from the world outside
is like a picture cast upon a screen. The picture has the right-left and
up-down dimensions, but no front-back dimension. How, then, does it come
about, as it certainly does, that we perceive by aid of the eye the distance of
objects from us, and the solidity and relief of objects? This problem in
visual perception has received much attention and been carried to a
satisfactory solution.
Consider, first, what stimuli indicative of distance and relief could affect a
single motionless eye. The picture on the retina could then be duplicated by
a painter on canvas, and the signs of distance available would be the same
in the two cases. The painter uses foreshortening, making a man in the
picture small in proportion to his distance away; {442} and in the same
way, when any familiar object casts a small picture on the retina, we
perceive the object, not as diminished in size, but as far away. The painter
colors his near hills green, his distant ones blue, and washes out all detail

CHAPTER XVII

406

in the latter--"aërial perspective", he calls this. His distant hill peeks from
behind his nearer one, being partially covered by it. His shadows fall in a
way to indicate the relief of the landscape. These signs of distance also
affect the single resting eye and are responded to by appropriate spatial
perceptions.
Now let the single eye move, with the head, from side to side: an index of
the distance of objects is thus obtained, additional to all the painter has at
his disposal, for the distant objects in the field of view now seem to move
with the eye, while the nearer objects slide in the opposite direction. How
much this sign is ordinarily made use of in perceiving distance is not
known; it is believed not to be used very much, and yet it is the most
delicate of all the signs of distance. The reason why it may not be much
used by two-eyed people is that another index almost as delicate and
handier to use is afforded by binocular vision.
When both eyes are open, we have a sign of distance that the painter does
not use, though it is used in stereoscope slides. The right and left eyes get
somewhat different views of the same solid object, the right eye seeing a
little further around the object to the right, and the left eye to the left. The
disparity between the two retinal images, due to the different angles at
which they view the object, is greatest when the object is close at hand, and
diminishes to practically zero when it is a few hundred feet away. This
disparity between the two retinal images is responded to by perception of
the distance and relief of the object.
It will be recalled [Footnote: See pp. 253-254.] that when two utterly
inconsistent {443} views are presented to the two eyes, as a red field to one
and a green field to the other, the visual apparatus balks and refuses to see
more than one at a time--the binocular rivalry phenomenon. But when the
disparate views are such as are presented to the two eyes by the same solid
object, the visual apparatus (following the law of combination) responds to
the double stimulation by getting a single view of an object in three
dimensions.
Esthetic Perception

CHAPTER XVII

407

Beauty, humor, pathos and sublimity can be perceived by the senses,
though we might debate a long time over the question whether these
characteristics are really objective, or merely our own feelings aroused by
the objects, and then projected into them. However that may be, there is no
doubt that the ability to make these responses is something that can be
trained, and that some people are blind and deaf to beauty and humor that
other people clearly perceive. Many a one fails to see the point of a joke, or
is unable to find any humor in the situation, which are clearly perceived by
another. Many a one sees only a sign of rain in a great bank of clouds, only
a weary climb in the looming mountain.
"A primrose by the river's brim A yellow primrose was to him. And it was
nothing more."
It would not be quite fair to describe such a one as lacking in feeling; he
probably has, on sufficient stimulus, the same feelings as another man, and
it would be more exact to say that he is lacking in perception of certain
qualities and relations. He probably tends, by nature and training, to
practical rather than esthetic perception. To see any {444} beauty in a new
style of music or painting, or to sense the humor in a new form of humorous
writing, you need to be initiated, to be trained in observing the precise
qualities and relations that are depended on for the esthetic effect. A
complex situation presents almost an unlimited range of facts that may be
perceived; no one perceives them all, and which he shall perceive depends
on his nature and training, as well as on his attitude or mental set at the
moment when the situation is presented.
Psychology has not by any means been idle in this field of esthetics; it has
developed experimental methods for determining the preferences of
individuals and of social groups. But it must be confessed that the results
offer little that can be succinctly summarized.
One curious result is that even the very simplest objects can produce an
esthetic effect. You would scarcely suppose, for example, that a mere
rectangle could produce any esthetic effect, or that it would make any
difference what exact proportions the rectangle possessed; and yet it is

CHAPTER XVII

408

found that some rectangles are preferred to others, and that the popular
choice falls upon what the art theorists have long known as the "golden
section", a rectangle with a width about sixty-two per cent, of its length.
Also, however much you may like symmetry, you would scarcely suppose
that it could make much difference where, on a horizontal line, a little cross
line should be erected; and yet nearly every one, on being tested, will agree
that the middle is the best point. These are merely a couple of sample
results from the numerous studies in this field.
Social Perception
By the senses we perceive the motives and intentions of other people, their
sincerity, goodness, intelligence, and {445} many other traits. We see them
angry or bored, amused, full of energy. To be sure, none of these human
characteristics is directly and fully sensed, but that is the case also with
many characteristics of inanimate objects which, nevertheless, we perceive
by aid of the senses. We perceive anger or sincerity in much the same way
that we perceive moisture or smoothness by the eye. To experience the
anger of another person is a complex experience, but a single element from
this experience may come to serve as the sign of the whole condition. A
good share of the child's undirected education consists in learning to
perceive the intentions and characteristics of other people by aid of little
signs. He learns to read the signs of the weather in the family circle, and he
learns in some measure to be a judge of men.
I once saw an instructive little incident, in which an older boy suddenly
grabbed the cap from a little boy's head, and held it out to the driver of a
passing automobile, as if giving it to him. The man saw the joke, and drove
on laughing, but the little boy took it seriously and was quite worried for
fear the man would carry off his cap. An older child would have "seen into"
the situation readily; he could not have been teased in that way. Many
social situations which are "all Greek" to a little child are understood
readily by an older person.
It would be very valuable if psychology could succeed in analyzing out the
signs by which such a trait as intelligence or "will power" is perceived, so

CHAPTER XVII

409

as to reduce such perception to a science; but it is very doubtful if this can
be done. Some persons who probably have themselves a keen perception of
such traits have put forward systems, based upon the shape of the face, etc.
They probably think they perceive human traits according to their systems,
but the systems fail in other hands, and are undoubtedly {446} fallacious.
No good judge of character really goes by the shape of the face; he goes by
little behavior signs which he has not analyzed out, and therefore cannot
explain to another person.
You can tell very little regarding a person's intelligence from his
photograph. This has now been pretty well established. Photographs of
persons of various degrees of intelligence are placed before those who are
reputed to be good judges, and their estimates compared with the test
ratings, and there is no correspondence. You might just as well look at the
back of the photograph as at the front.
Even with the person before you, you are likely to commit great errors. This
sort of incident has happened. A young woman is brought before the court
for delinquency, and the psychologist who has tested her testifies that she is
of low intelligence. But the young woman is good-looking and graceful in
her speech and manners, and so impresses the judge that he dismisses as
"absurd" the notion of her being feeble-minded. He sets her free, on which
she promptly gets into trouble again. Apparently the only way to perceive
intelligence is to see a person in action, preferably under standard
conditions, where his performance can be measured; that is to say, in an
intelligence test.
Errors of Perception
The grocer needs to be assured of the accuracy of his scales, and the
chemist of the high accuracy of his chemical balance; the surveyor needs to
know about the errors that may creep into the process of measuring the
length of a line or angle. All of them, using instruments to assist in accurate
perception of facts, are concerned about the accuracy of their instruments.
Now, we all use the senses in perceiving facts, and "errors of sense"
therefore concern us {447} all. Some of the errors committed in sense

CHAPTER XVII

410

perception can be laid at the door of the senses, and some rather belong in
the sphere of perception proper.
If you come out of a cold room into a warm room, the latter seems warmer
than it is; and if you come out of a dark room into a light room, the latter
seems brighter than it is. These errors, due to adaptation of the
temperature sense and of the retina, are properly classed as errors of
sense.
If you are taking a child's temperature with a "minute thermometer", it is
best to use your watch to tell you when the minute is up, for the minute,
when you are simply waiting for it to pass, seems very long. But if you are
"working against time", a minute seems short. The professor is shocked
when the closing bell rings, and thinks that certainly the hour cannot be up;
but some of the students have been consulting their watches for quite a long
while, being sure the hour must be nearly over. These are scarcely errors of
sense, but they are errors of perception.
Where we tend to err in one certain direction from the truth, as in the
examples just cited, psychology speaks of a "constant error", and evidently
the knowledge of such constant errors is of importance wherever the facts
are of importance. In a court of law, a witness often has to testify regarding
the length of time occupied by some event, and a knowledge of the constant
errors in time perception would therefore be of considerable legal
importance. They would need to be worked out in considerable detail, since
they differ according to the desires and attitude of the witness at the time of
the event.
Besides constant errors, there are accidental or variable errors, due to
slight momentary causes. Both constant and variable errors can be
illustrated by a series of shots at a target. The variable error is illustrated
by the scatter of {448} the hits, and the constant error by the excess of hits
above the bull's-eye, or below, or to the right or left. The constant error can
be corrected, once you know what it is; if results show that you tend to
shoot too high, you can deliberately aim lower. But the variability of any
performance cannot be eliminated except by long practice, and not

CHAPTER XVII

411

altogether even then.
[Illustration: Fig. 66.--Constant error and scatter in hitting at a target. The
little circle was the target, but the center of the actual distribution of the
attempts lies at the cross, which was drawn in afterwards. The constant
error could be stated by saying that the center of distribution was so far
from the target, and in such and such a direction. The scattering of the
attempts can be measured also.]
Experimental psychology has taken great pains in measuring the accuracy
of different sorts of perception. How small a difference in length can be
perceived by the eye, how small a difference of weight by the hand--these
are sample problems in this line.
For example, to measure the fineness with which weights can be perceived
when "hefted" in the hand, you take two objects that are alike in size and
appearance but differing slightly in weight, and endeavor to decide which
is the heavier just by lifting them. You try repeatedly and keep track of the
number of errors, using this number as a measure of the accuracy of
perception. Now, if one weight were twice as heavy as the other (one, for
example, weighing 100 grams {449} and the other 200), you would never
make an error except through carelessness; but if one were 100 and the
other 120 grams, you would make an occasional error, and the number of
errors would increase as the difference was decreased; finally, comparing
100 and 101 grams, you would get almost as many wrong as right, so that
your perception of that small difference would be extremely unreliable.
ERRORS IN PERCEIVING SMALL DIFFERENCES OF WEIGHT (From
Warner Brown)
Difference 20 16 12 8 4 8 2 1 grams
Errors 1 2 5 18 28 81 89 44 per hundred trials
The weights were in the neighborhood of 100 grams; each weight was
compared with the 100-gram weight, and each such pair was lifted and

CHAPTER XVII

412

judged 1400 times. Notice that the per cent of errors gradually increases as
the difference becomes smaller.
The smaller the difference between two stimuli, the more numerous the
errors in perceiving it, or, the less perceptible it is, and there is no sharp
line between a difference that can be perceived and one that is too small to
be perceived. That is the first great result from the study of the perception
of small differences.
The second great result is called Weber's law, which can be stated as
follows: In the same sort of perception, equal relative (not absolute)
differences are equally perceptible. For example, from the preceding table
we see that 28 per cent. of errors are made in comparing weights of 100
and 104 grams; then, according to Weber's law, 28 per cent, of errors
would also be made in comparing 200 grams with 208, or 500 with 520, or
1000 with 1040 grams, or any pair of weights that stood to each other in
the ratio of 100 to 104. Weber's law is only approximately true for the
perception of weights, since actually fewer errors are committed in
comparing 500 and 520 than in comparing 100 and 104 grams; but the
discrepancy is not extremely great here, and in {450} some other kinds of
perception, as especially in comparing the brightness of lights or the length
of seen lines, the law holds good over a wide range of stimuli and only
breaks down near the upper and lower extremes. We are familiar, in
ordinary life, with the general truth of Weber's law, since we know that an
inch would make a much more perceptible addition to the length of a man's
nose than to his height, and we know that turning on a second light when
only one is already lit gives a much more noticeable increase in the light
than if we add one more light when twenty are already burning.
A third great result of this line of study is that different sorts of perception
are very unequal in their fineness and reliability. Perception of brightness
is about the keenest, as under favorable conditions a difference of one part
in one hundred can here be perceived with very few errors. Visual
perception of length of line is good for about one part in fifty, perception of
lifted weight for about one part in ten, perception of loudness of sound for
about one part in three. But the perception of small differences in the pitch

CHAPTER XVII

413

of musical tones is keener still, only that, not following Weber's law in the
least, it cannot be expressed in the same way. A person with a good ear for
pitch can distinguish with very few errors between two tones that differ by
only one vibration per second, and can perceive this same absolute
difference equally well, whether the total vibration rate is 200, 400, or 800
vibrations per second.
Illusions
An error of perception is often called an "illusion", though this term is
commonly reserved for errors that are large and curious. When one who is
being awakened by a bell perceives it as a tom-tom, that is an illusion. An
{451} illusion consists in responding to a sensory stimulus by perceiving
something that is not really there. The stimulus is there, but not the fact
which it is taken to indicate. Illusion is false perception.
The study of illusions is of value, not only as showing how far a given kind
of perception can be trusted, but also as throwing light on the process of
perception. When a process goes wrong, it sometimes reveals its inner
mechanism more clearly than when everything is running smoothly. Errors
of any kind are meat to the psychologist.
Illusions may be classified under several headings according to the factors
that are operative in causing the deception.
1. Illusions due to peculiarities of the sense organs.
Here the stimulus is distorted by the sense organ and so may easily be
taken as the sign of an unreal fact.
Separate the points of a pair of compasses by about three-quarters of an
inch, and draw them across the mouth, one point above it and the other
below; you will get the illusion of the points separating as they approach
the middle of the mouth (where the sensory nerve supply is greatest), and
coming together again as they are drawn to the cheek at the other side.

CHAPTER XVII

414

Under this same general head belong also after-images and contrast
colors, and also double vision whenever for any reason the two eyes are
not accurately converged upon an object. The fact that a vertical line
appears longer than an equal horizontal is supposed to depend upon some
peculiarity of the retina. Aside from the use of this class of illusions in the
detailed study of the different senses, the chief thing to learn from them is
they so seldom are full-fledged illusions, because they are ignored or
allowed for, and not taken as the signs of facts. An after-image would
constitute a genuine illusion if it were taken for some real {452} thing out
there; but as a matter of fact, though after-images occur very
frequently--slight ones practically every time the eyes are turned--they are
ignored to such an extent that the student of psychology, when he reads
about them, often thinks them to be something unusual and lying outside of
his own experience. The same is true of double images. This all goes to
show how strong is the tendency to disregard mere sensation in the interest
of getting objective facts.
2. Illusions due to preoccupation or mental set.
When an insane person hears the creaking of a rocking-chair as the voice
of some one calling him bad names, it is because he is preoccupied with
suspicion. We might almost call this an hallucination,[Footnote: See p.
375.] since he is projecting his own auditory images and taking them for
real sensations; it is, at any rate, an extreme instance of illusion. In a
milder form, similar illusions are often momentarily present in a perfectly
normal person, as when he is searching for a lost object and thinks he sees
it whenever anything remotely similar to the desired object meets his eyes;
or as when the mother, with the baby upstairs very much on her mind,
imagines she hears him crying when the cat yowls or the next-door
neighbors start their phonograph. The ghost-seeing and burglar-hearing
illusions belong here as well. The mental set facilitates responses that are
congruous with itself.
3. Illusions of the response-by-analogy type.

CHAPTER XVII

415

This is probably the commonest source of everyday illusions, and the same
principle, as we have seen, is operative in a host of correct perceptions.
Perceiving the obliquely presented rectangle as a rectangle is an example
of correct perception of this type. Perceiving the buzzing of a fly as an
aeroplane is the same sort of response only that it happens to be incorrect.
If the present stimulus has something in {453} common with the stimulus
which has in the past aroused a certain perception, we may make the same
response now as we did before--especially, of course, if the present mantel
set favors this response.
[Illustration: Fig. 67.--The Ladd-Franklin illusion of monocular
perspective. Close one eye, and hold the book so that the other eye is at the
common center from which the lines radiate; this center is about 5 inches
from the figure. Hold the book horizontally, and just a little below the eye.]
A good instance of this type is the "proofreader's illusion", so called,
perhaps, because the professional proofreader is less subjcet to it than any
one else. The one most subject to it is the author of a book, for whom it is
almost impossible to find every misspelled word and other typographical
error in reading the proof. Almost every book comes out with a few such
errors, in spite of having been scanned repeatedly by several people. A
couple of misprints have purposely been left in the last few lines for the
reader's benefit. If the word as printed has enough resemblance to the right
word, it arouses the same percept and enables the reader to get the sense
and pass on satisfied. {454} Before we began to pore over books and
pictures, the lines that we saw usually were the outlines of solid objects,
and now it requires only a bare diagram of lines to arouse in us the
perception of a solid object seen in perspective. An outline drawing, like
those of the cube and staircase used to illustrate ambiguous perspective, is
more readily seen as a solid object than as a flat figure.
[Illustration: Fig. 68.--Aristotle's illusion.]
Another illusion of this general type dates away back to Aristotle. Cross
two fingers, perhaps best the second and third, and touch a marble with the
crossed part of both fingers, and it seems to be two marbles; or, you can

CHAPTER XVII

416

use the side of your pencil as the stimulus. In the customary position of the
fingers, the stimuli thus received would mean two objects.
A much more modern illusion of the same general type is afforded by the
moving pictures. The pictures do not actually show an object in motion;
they simply show the object in a series of motionless positions, caught by
instantaneous photography. The projector shows the series of snap-shots in
rapid succession, and conceals them by a shutter while they are shifted, so
as to avoid the blur that would occur if the picture were itself moved before
the eyes. But the series of snap-shots has so much in common with the
visual stimulus got from an actually present moving object that we make
the same perceptive response. {455} The same illusion in a rudimentary
form can be produced by holding the forefinger upright three or four inches
in front of the nose, and looking at it while winking first the one eye and
then the other. Looked at with the right eye alone it appears to be more to
one side and looked at with the left eye alone it appears to be more to the
other side; and when the one eye is closed and the other simultaneously
opened, the finger seems actually to move from one position to the other.
[Illustration: Fig. 69.--The pan illusion. The two pan-shaped outlines are
practically identical, but it is hard to compare the corresponding
sides--hard to isolate from the total figure just the elements that you need to
compare.]
4. Illusions due to imperfect isolation of the fact to be perceived.
Here belong, probably, most of the illusions produced in the psychological
laboratory by odd combinations of lines, etc. A figure is so drawn as to
make it difficult to isolate the fact to be observed, and when the observer
attempts to perceive it, he falls into error. He thinks he is perceiving one
fact, when he is perceiving another. The best example is the Müller-Lyer
figure, in which two equal lines are embellished with extra lines at their
ends; you are supposed to perceive the lengths of the two main lines, but
you are very apt to take the whole figure in the rough and perceive the
distances between its chief parts. You do not succeed in isolating the
precise fact you wish to observe.

CHAPTER XVII

417

{456}
The Müller-Lyer Illusion
The most familiar form of this striking illusion is made with arrow heads,
thus
[Illustration: Inward and outward arrowheads on two equal length lines.]
In attempting to compare the two horizontal lines one is confused so as to
regard the line with outward-extending obliques longer than that with
inward-extending obliques, though, measured from point to point, they are
equal. The same illusion occurs in a variety of similar figures, such as
[Illustration: Inward and outward arrowheads.]
where the main lines are not drawn, but the distances from point to point
are to be compared; or such as
[Illustration: Inward and outward solid arrowheads.]
where the two distances between points are again to be compared. Angles,
however, are not necessary to give the illusion, as can be seen in this figure
[Illustration: Half circles with similar spacing.]
or in this
[Illustration: Full circles with similar spacing.]
In the last the lengths to be compared extend (a) from the right-hand rim of
circle 1 to the left-hand rim of circle 2, and (b) from this last to the
right-hand rim of circle 3. The same illusion can be got with squares, or
even with capital letters as

CHAPTER XVII

418

[Illustration: Upper case E with similar spacing and the center letter
reversed.]
or
[Illustration: Upper case R with similar spacing and the center letter
reversed.]
or
[Illustration: Upper case L E D with similar spacing and the center letter
reversed.]
where the distances between the main vertical lines are to be compared.
Here is an another form of the same illusion
[Illustration: Two sets of three parallel horizontal lines. In the first set the
center line is longest. In the second set the center line is shortest, but the
same length as the first center line.]
the middle lines being affected by those above and below.
{457}
Though these illusions seem like curiosities, and far from every-day
experience, they really do enter in some degree into almost every figure
that is not perfectly square and simple.
[Illustration: Fig. 70.--The Poggendorf illusion. Are the two obliques parts
of the same straight line?]
Any oblique line, any complication of any sort, is pretty sure to alter the
apparent proportions and directions of the figure. A broad effect, a long
effect, a skewed effect, may easily be produced by extra lines suitably
introduced into a dress, into the front of a building, or into a design of any

CHAPTER XVII

419

sort; so that the designer needs to have a practical knowledge of this type
of illusion.
Extra lines have an influence also upon esthetic perception. The esthetic
effect of a given form may be quite altered by the introduction of apparently
insignificant extra lines.
{458}
[Illustration: Fig. 71.--The barber-pole illusion. The rectangle represents a
round column, around which runs a spiral, starting at a. Which of the lines,
1, 2, 3, 4, and 5, comes closest to being a continuation of a?]
Esthetic perception is very much subject to the law of combination, and to
the resulting difficulty of isolation.
One of the most interesting illusions, not being visual, can {459} only be
described and not demonstrated here.
[Illustration: Fig. 72.--By aid of this simple figure, the Poggendorf and
barber-pole illusions can be seen to be instances of the Müller-Lyer
illusion, Try to bisect the horizontal line in this figure. The oblique line at
the right tends to displace the right-hand end of the horizontal to the right,
while the oblique at the left tends to displace the left-hand end of the
horizontal also to the right. Similar displacements account for the
Poggendorf and barber-pole illusions.]
[Illustration: Fig. 73.--The Zoellner illusion. The long lines are really
parallel. The illusion is increased by holding the figure so that these main
lines shall be neither vertical nor horizontal. It is more difficult to "deceive
the eye" in regard to the direction of vertical and horizontal lines, than in
regard to the direction of oblique lines. This illusion must be related in
some way to the Müller-Lyer and Poggendorf illusions, since the elements
employed in constructing the three figures are so much the same.

CHAPTER XVII

420

If you treat this figure according to the directions given for Fig. 67, and
sight along the obliques, you get an illusion of perspective.]
It is called the "size-weight illusion", and may be said to be based on the
old catch, "Which is heavier, a pound of lead or a pound of feathers?" Of
course, we shrewdly answer, a pound's {460} a pound. But lift them and
notice how they feel! The pound of lead feels very much heavier. To reduce
this illusion to a laboratory experiment, you take two round wooden
pill-boxes, one several times as large as the other, and load them so that
they both weigh the same; then ask some one to lift them and tell which is
the heavier. He will have no doubt at all that the smaller box is the heavier;
it may seem two or three times as heavy. Young children, however, get the
opposite illusion, assimilating the weight to the visual appearance; but
older persons switch over to the contrast effect, and perceive in opposition
to the visual appearance. What seems to happen in the older person is a
motor adjustment for the apparent weights, as indicated by their visual
appearance, with the result that the weight of larger size is lifted more
strongly than the weight of smaller size; so that the big one comes up easily
and seems light, the little one slowly and seems heavy.
{461}
EXERCISES
1. Outline the chapter.
2. Show that the law of combination accounts both for many correct
perceptions, and for many illusions.
3. Through which of the senses are spatial facts best perceived?
4. "At first, the baby very likely perceives a ball simply as something for
him to handle and throw; but, through the medium of blocked response, he
comes to perceive it more objectively, i.e., as an object related to other
objects, and not simply related to himself." Explain and illustrate this
statement.

CHAPTER XVII

421

5. Give an example from the field of auditory perceptions where "isolation"
is very much in evidence.
6. Can you see any law analogous to Weber's law in the field of financial
profit and loss? Does a dollar gained or lost seem the same amount,
without regard to the total amount possessed?
7. Trial and error perception. Go about the room with closed eyes, and
identify objects by touching them with the hands. Notice whether your first
impression gives place to corrected impressions.
8. Perception of form by "active" and "passive" touch. With the eyes closed,
try to distinguish objects of different shapes (a) by letting them simply rest
upon the skin, and (b) by handling them. What senses coöperate in
furnishing data for "active touch"?
9. Binocular parallax, or the differing views of the same solid object
obtained by the two eyes. Hold a small, three-dimensional object a foot in
front of the face, and notice carefully the view of it obtained by each eye
separately. A pencil, pointing towards the face, gives very different views.
What becomes of the two monocular views when both eyes are open at
once?
10. Binocular compared with monocular perception of "depth" or distance
away. Take a pencil in each hand, and bring the points together a foot in
front of the face, while only one eye is open. When the points seem to be
nearly touching, open the other eye, and see whether the two points still
seem to be close together. Repeat.
REFERENCES
Discussions of perception that are in some respects fuller than the present
chapter can be found in C. H. Judd's Psychology, General Introduction,
2nd edition, 1917, pp. 162-194; in Titchener's Textbook of Psychology,
1909, pp. 303-373; and in Warren's Human Psychology, 1919, pp.
232-269.

CHAPTER XVII

{462}

422

CHAPTER XVIII

423

CHAPTER XVIII
REASONING
THE PROCESS OF MENTAL, AS DISTINGUISHED FROM MOTOR
EXPLORATION
We are still on the general topic of "discovery". Indeed, we are still on the
topic of perception; we come now to that form of perception which is
different from sense perception. The reasoner is an explorer, and the
culmination of his explorations is the perception of some fact previously
unknown to him.
Reasoning might be described as mental exploration, and distinguished
from purely motor exploration of the trial and error variety. Suppose you
need the hammer, and go to the place where it is kept, only to find it gone.
Now if you simply proceed to look here and there, ransacking the house
without any plan, that would be motor exploration. But if, finding this trial
and error procedure to be laborious and almost hopeless, you sit down and
think, "Where can that hammer be? Probably where I used it last!" you
may recall using it for a certain purpose, in a certain place, go there and
find it. You have substituted mental exploration of the situation for purely
motor exploration, and saved time and effort. Such instances show the use
of reasoning, and the part it plays in behavior.
The process of reasoning is also illustrated very well in these simple cases.
It is an exploratory process, a searching for facts. In a way, it is a trial and
error process. If you don't ransack the house, at least you ransack your
memory, in search for facts that will assist you. You recall this fact {463}
and that, you turn this way and that, mentally, till some fact is recalled that
serves your need. No more in reasoning than in motor exploration can you
hope to go straight to the desired goal.
Animal and Human Exploration

CHAPTER XVIII

424

Is man the only reasoning animal? The experimental work on animal
learning, reviewed in one of our earlier chapters, was begun with this
question in mind. Previous evidence on this point had been limited to
anecdotes, such as that of the dog that was found opening a gate by lifting
the latch with his nose, and was supposed to have seen men open the gate
in this way, and to have reasoned that if a man could do that, why not a
dog? The objection to this sort of evidence is that the dog's manner of
acquiring the trick was not observed. Perhaps he reasoned it out, and
perhaps he got it by accident--you cannot tell without watching the process
of learning. You must experiment, by taking a dog that does not know the
trick, and perhaps first "showing him" how to open the gate by lifting the
latch; but it was found that dogs and cats, and even monkeys, could not
learn the trick in this way. If, however, you placed a dog in a cage, the door
of which could be opened by lifting a latch, and motivated the dog strongly
by having him hungry and placing food just outside, then the dog went to
work by trial and error, and lifted the latch in the course of his varied
reactions; and if he were placed back in the cage time after time, his
unsuccessful reactions were gradually eliminated and the successful
reaction was firmly attached to the situation of being in that cage, so that
he would finally lift the latch without any hesitation.
The behavior of the animal does not look like reasoning. For one thing, it is
too impulsive and motor. The typical {464} attitudes of the reasoner,
whether "lost in thought" or "studying over things", do not appear in the
dog, or even in the monkey, though traces of them may perhaps be seen in
the chimpanzee and other manlike apes. Further, the animal's learning
curve fails to show sudden improvements such as in human learning curves
follow "seeing into" the problem. In short, there is nothing to indicate that
the animal recalls facts previously observed or sees their bearing on the
problem in hand. He works by motor exploration, instead of mental. He
does not search for "considerations" that may furnish a clue.
The behavior of human beings, placed figuratively in a cage, sometimes
differs very little from that of an animal. Certainly it shows plenty of trial
and error and random motor exploration; and often the puzzle is so blind
that nothing but motor exploration will bring the solution. What the human

CHAPTER XVIII

425

behavior does show that is mostly absent from the animal is (1) attentive
studying over the problem, scrutinizing it on various sides, in the effort to
find a clue; (2) thinking, typically with closed eyes or abstracted gaze, in
the effort to recall something that may bear on the problem; and (3) sudden
"insights" when the present problem is seen in the light of past experience.
Though reason differs from animal trial and error in these respects, it still
is a tentative, try-and-try-again process. The right clue is not necessarily
hit upon at the first try; usually the reasoner finds one clue after another,
and follows each one up by recall, only to get nowhere, till finally he
notices a sign that recalls a pertinent meaning. His exploration of the
situation, though carried on by aid of recalled experience instead of by
locomotion, still resembles finding the way out of a maze with many blind
alleys. In short, reasoning may be called a trial and error process in the
sphere of mental reactions.
{465}
The reader familiar with geometry, which is distinctly a reasoning science,
can readily verify this description. It is true that the demonstrations are set
down in the book in a thoroughly orderly manner, proceeding straight from
the given assumption to the final conclusion; but such a demonstration is
only a dried specimen and does not by any means picture the living mental
process of reasoning out a proposition. Solving an "original" is far from a
straight-forward process. You begin with a situation (what is "given")
involving a problem (what is to be proved), and, studying over this lay-out
you notice a certain fact which looks like a clue; this recalls some previous
proposition which gives the significance of the clue, but often turns out to
have no bearing on the problem, so that you shift to another clue; and so
on, by what is certainly a trial and error process, till some fact noted in the
situation plus some knowledge recalled by this fact, taken together, reveal
the truth of the proposition.
Reasoning Culminates in Inference

CHAPTER XVIII

426

When you have described reasoning as a process of mental exploration,
you have told only half the story. The successful reasoner not only seeks,
but finds. He not only ransacks his memory for data bearing on his
problem, but he finally "sees" the solution clearly. The whole exploratory
process culminates in a perceptive reaction. What he "sees" is not
presented to his senses at the moment, but he "sees that something must be
so". This kind of perception may be called inference.
To bring out distinctly the perceptive reaction in reasoning, let us cite a few
very simple cases. Two freshmen in college, getting acquainted, ask about
each other's fathers and find that both are alumni of this same college.
"What class was your father in?" "In the class of 1900. And {466} yours?"
"Why, he was in 1900, too. Our fathers were in the same class; they must
know each other!" Here two facts, one contributed by one person and the
other by another person, enable both to perceive a third fact which neither
of them knew before. Inference, typically, is a response to two facts, and the
response consists in perceiving a third fact that is bound up in the other
two.
You do not infer what you can perceive directly by the senses. If Mary and
Kate are standing side by side, you can see which is the taller. But if they
are not side by side, but Mary's height is given as so much and Kate's as an
inch more, then from these two facts you know, by inference, that Kate is
taller than Mary.
"Have we set the table for the right number of people?" "Well, we can see
when the party comes to the table." "Oh! but we can tell now by counting.
How many are there to be seated? One, two, three--fifteen in all. Now
count the places at table--only fourteen. You will have to make room for
one more." This reducing of the problem to numbers and then seeing how
the numbers compare is one very simple and useful kind of inference.
Indirect comparison may be accomplished by other similar devices. I can
reach around this tree trunk, but not around that, and thus I perceive that
the second tree is thicker than the first, even though it may not look so. If
two things are each found to be equal to a third thing, then I see they must

CHAPTER XVIII

427

be equal to each other; if one is larger than my yardstick and the other
smaller, then I see they must be unequal.
Of the two facts which, taken together, yield an inferred fact, one is often a
general rule or principle, and the inference then consists in seeing how the
general rule applies to a special case. A dealer offers you a fine-looking
diamond ring for five dollars, but you recall the rule that "all genuine
diamonds are expensive", and perceive that this {467} diamond must be an
imitation. This also is an instance of indirect comparison, the yardstick
being the sum of five dollars; this ring measures five dollars, but any
genuine diamond measures more than five dollars, and therefore a
discrepancy is visible between this diamond and a genuine diamond. You
can't see the discrepancy by the eye, but you see it by way of indirect
comparison, just as you discover the difference between the heights of
Mary and Kate by aid of the yardstick.
If all French writers are clear, then Binet, a French writer, must be clear.
Here "French writers" furnish your yardstick. Perhaps it would suit this
case a little better if, instead of speaking of indirect comparison by aid of a
mental yardstick, we spoke in terms of "relations". When you have before
your mind the relation of A to M, and also the relation of B to M, you may
be able to see, or infer, a relation between A and B. M is the common point
of reference to which A and B are related. Binet stands in a certain relation
to "French writers", who furnish the point of reference; that is, he is one of
them. Clear writing stands in a certain relation to French writers, being
one of their qualities; from which combination of relations we perceive
clear writing as a quality of Binet.
Just as an illusion is a false sense perception, so a false inference is called
a "fallacy". One great cause of fallacies consists in the confused way in
which facts are sometimes presented, resulting in failure to see the
relationships clearly. If you read that
"Smith is taller than Brown; and Jones is shorter than Smith; and therefore
Jones is shorter than Brown,"

CHAPTER XVIII

428

the mix-up of "taller" and "shorter" makes it difficult to get the
relationships clearly before you, and you are likely {468} to make a
mistake. Or again, if Mary and Jane both resemble Winifred, can you infer
that they resemble each other? You are likely to think so at first, till you
notice that resemblance is not a precise enough relation to serve for
purposes of indirect comparison. Mary may resemble Winifred in one
respect, and Jane may resemble her in another respect, and there may be
no resemblance between Mary and Jane.
Or, again,
"All French writers are clear; but James was not a French writer; and
therefore James was not a clear writer,"
may cause some confusion from failure to notice that the relation between
French writers and clear writing is not reversible so that we could turn
about and assert that all clear writers were French.
The reasoner needs a clear head and a steady mental eye; he needs to look
squarely and steadily at his two given statements in order to perceive their
exact relationship. Diagrams and symbols often assist in keeping the
essential facts clear of extraneous matter, and so facilitate the right
response.
To sum up: the process of reasoning culminates in two facts being present
as stimuli, and the response, called "inference", consists in perceiving a
third fact that is implicated in the two stimulus-facts. It is a good case of
the law of combination, and at the same time it is a case where "isolation"
is needed, otherwise the response will be partly aroused by irrelevant
stimuli, and thus be liable to error.
Varieties of Reasoning
Reasoning as a whole is a process of mental exploration culminating in
inference. Now, without regard to possible {469} variations of the
perceptive response of inference, there are at least different varieties of the

CHAPTER XVIII

429

exploratory process leading up to inference. The situation that arouses
reasoning differs from one case to another, the motive for engaging in this
rather laborious mental process differs, and the order of events in the
process differs. There are several main types of reasoning, considered as a
process of mental exploration.
1. Reasoning out the solution of a practical problem.
A "problem" is a situation for which we have no ready and successful
response. We cannot successfully respond by instinct or by previously
acquired habit. We must find out what to do. We explore the situation,
partly by the senses and actual movement, partly by the use of our wits. We
observe facts in the situation that recall previous experiences or previously
learned rules and principles, and apply these to the present case. Many of
these clues we reject at once as of no use; others we may try out and find
useless; some we may think through and thus find useless; but finally, if our
exploration is successful, we observe a real clue, recall a pertinent guiding
principle, and see the way out of our problem.
Two boys went into the woods for a day's outing. They climbed about all
the morning, and ate their lunch in a little clearing by the side of a brook.
Then they started for home, striking straight through the woods, as they
thought, in the direction of home. After quite a long tramp, when they
thought they should be about out of the woods, they saw clear space ahead,
and, pushing forward eagerly, found themselves in the same little clearing
where they had eaten their lunch! Reasoning process No. 1 now occurred:
one of the boys recalled that when traversing the woods without any
compass or landmark, the traveller is very likely to go in a circle;
inference, "That is what we have done and {470} we probably shall do the
same thing again if we go ahead. We may as well sit down and think it
over."
Mental exploration ensued. "How about following the brook?" "That won't
do, for it flows down into a big swamp that we couldn't get through". "How
about telling directions by the sun?" "But it has so clouded over that you
can't tell east from west, or north from south." "Yes, those old clouds! How

CHAPTER XVIII

430

fast they are going! They seem to go straight enough." "Well, say! How
about following the clouds? If we keep on going straight, in any direction,
for a couple of hours, we shall surely get out of the woods somewhere."
This seems worth trying and actually brings the boys out to a road where
they can inquire the way home.
What we find in this case is typical of problem solution. First, a desire is
aroused, and it facilitates the observation and recall of facts relevant to
itself. One pertinent fact is observed, another pertinent fact, or rule, is
recalled; and in these two taken together the key to the problem is found.
2. Rationalization or self-justification.
While in the preceding case reasoning showed what to do, here it is called
upon to justify what has been done, or what is going to be done anyway.
The question is, what reason to assign for the act; we feel the need of
meeting criticism, either from other people or from ourselves. The real
motive for the act may be unknown to ourselves, as it often is unless we
have made a careful study of motives; or, if known, it may not be such as
we care to confess. We require a reasonable motive, some acceptable
general principle that explains our action.
A child is unaccountably polite and helpful to his mother some day, and
when asked about it replies that he simply wants to help--while his real
motive may have been to score against his brother or sister, who is to some
extent his rival.
{471}
If I have work requiring attention but want to go to the game, I should
certainly be lacking in reasoning ability if I could not find something in the
situation that made my attendance at the game imperative. I am stale, and
the game will freshen me up and make me work better afterward. Or, I am
in serious danger of degenerating into a mere "grind", and must fight
against this evil tendency. Or, my presence at the game is necessary in
order to encourage the team.

CHAPTER XVIII

431

Thus, aspects of the situation that are in line with our desire bob to the
surface and suggest acceptable general principles that make the intended
action seem good and even necessary. Finding excuses for acts already
performed is a reasoning exercise of the same sort. Man is a rationalizing
animal as well as a rational animal, and his self-justifications and excuses,
ludicrous though they often are, are still a tribute to his very laudable
appreciation of rationality.
3. Explanation.
This form of reasoning, like the preceding, takes its start with something
that raises the question, "Why?" Only, our interest in the question is
objective rather than subjective. It is not our own actions that call for
explanation, but some fact of nature or of human behavior. Why--with
apologies to the Southern Hemisphere!--is it so cold in January? The fact
arouses our curiosity. We search the situation for clues, and recall past
information, just as in the attempt to solve a practical problem. "Is it
because there is so much snow in January?" "But what, then, makes it
snow? This clue leads us in a circle." "Perhaps, then, it is because the sun
shines so little of the time, and never gets high in the sky, even at noon."
That is a pretty good clue; it recalls the general principle that, without a
continued supply of heat, cold is inevitable. To explain a phenomenon is to
deduce it from {472} an accepted general principle; to understand it is to
see it as an instance of the general principle. Such understanding is very
satisfactory, since it rids you of uncertainty and sometimes from fear, and
gives you a sense of power and mastery.
4. Application.
The reasoning processes discussed up to this point have taken their start
with the particular, and have been concerned in a search for the general
principle that holds good of the given particular case. Reasoning may also
take its start at the other end, in a general statement, and seek for
particular cases belonging under this general rule. But what can be the
motive for this sort of reasoning? What is there about a general proposition
to stimulate exploration?

CHAPTER XVIII

432

Several motives may be in play. First, there may be a need for application
of the general principle. Somebody whose authority you fully accept
enunciates a general proposition, and you wish to apply it to special cases,
either for seeing what practical use you can make of it, or simply to make
its meaning more real and concrete to yourself. Your exploration here takes
a different form from that thus far described. Instead of searching a
concrete situation for clues, and your memory for general principles, you
search your memory for particular cases where the general law should
apply. If all animals are cold-blooded, excepting only birds and mammals,
then fish and frogs and lizards are cold-blooded, spiders, insects, lobsters
and worms; having drawn these inferences, your understanding of the
general proposition becomes more complete.
5. Doubt.
A general proposition may stimulate reasoning because you doubt it, and
wish to find cases where it breaks down. Perhaps somebody makes the
general statement whose authority you do not accept; perhaps he says it in
an assertive way that makes you want to take him down {473} a peg.
Perhaps you are in the heat of an argument with him, so that every
assertion he may make is a challenge. You search your memory for
instances belonging under the doubted general statement, in the hope of
finding one where the general statement leads to a result that is contrary to
fact. "You say that all politicians are grafters. Theodore Roosevelt was a
politician, therefore, according to you, he must have been a grafter. But he
was not a grafter, and you will have to take back that sweeping assertion."
6. Verification.
This same general type of reasoning, which takes its start with a general
proposition, and explores particular instances in order to see whether the
proposition, when applied to them, gives a result in accordance with the
facts, has much more serious uses; for this is the method by which a
hypothesis is tested in science. A hypothesis is a general proposition put
forward as a guess, subject to verification. If it is thoroughly verified, it will
be accepted as a true statement, a "law of nature", but at the outset it is

CHAPTER XVIII

433

only a guess that may turn out to be either true or false. How shall its truth
or falsity be demonstrated? By deducing its consequences, and testing these
out in the realm of observed fact.
An example from the history of science is afforded by Harvey's discovery of
the circulation of the blood, which was at first only a hypothesis, and a
much-doubted one at that. If the blood is driven by the heart through the
arteries, and returns to the heart by way of the veins, then the flow of blood
in any particular artery must be away from the heart, and in any particular
vein towards the heart. This deduction was readily verified. Further, there
should be little tubes leading from the smallest arteries over into the
smallest veins, and this discovery also was later verified, when the
invention of the microscope made observation of the capillaries possible.
Other deductions also were verified, {474} and in short all deductions from
the hypothesis were verified, and the circulation of the blood became an
accepted law.
Most hypotheses are not so fortunate as this one; most of them die by the
wayside, since it is much easier to make a guess that shall fit the few facts
we already know than to make one that will apply perfectly to many other
facts at present unknown. A hypothesis is a great stimulus to the discovery
of fresh facts. Science does not like to have unverified hypotheses lying
around loose, where they may trip up the unwary. It is incumbent on any
one who puts forward a hypothesis to apply it to as many special cases as
possible, in order to see whether it works or not; and if the propounder of
the hypothesis is so much in love with it that he fails to give it a thorough
test, his scientific colleagues are sure to come to the rescue, for they, on the
whole, would be rather pleased to see the other fellow's hypothesis come to
grief. In this way, the rivalry motive plays a useful part in the progress and
stabilizing of science.
Deductive and Inductive Reasoning
When you are sure at the outset of your general proposition, and need only
to see its application to special cases, your reasoning is said to be
"deductive". Such reasoning is specially used in mathematics. But in

CHAPTER XVIII

434

natural science you are said to employ "inductive reasoning". The process
has already been described. You start with particular facts demanding
explanation or generalization, and try to find some accepted law that
explains them. Failing in that, you are driven to guess at a general law, i.e.,
to formulate a hypothesis that will fit the known facts. Then, having found
such a conjectural general law, you proceed to deduce its consequences;
you see that, if the hypothesis is true, such and such facts must be true.
Next you go out and see whether these facts are true, and if they are, your
hypothesis {475} is verified to that extent, though it may be upset later. If
the deduced facts are not true, the hypothesis is false, and you have to
begin all over again.
The would-be natural scientist may fail at any one of several points. First,
he may see no question that calls for investigation. Everything seems a
matter-of-course, and he concludes that science is complete, with nothing
left for him to discover. Second, seeing something that still requires
explanation, he may lack fertility in guessing, or may be a poor guesser and
set off on a wild-goose chase. Helmholtz, an extremely fertile inventor of
high-grade hypotheses, describes how he went about it. He would load up
in the morning with all the knowledge he could assemble on the given
question, and go out in the afternoon for a leisurely ramble; when, without
any strenuous effort on his part, the various facts would get together in new
combinations and suggest explanations that neither he nor any one else had
ever thought of before. Third, our would-be scientific investigator may lack
the clear, steady vision to see the consequences of his hypothesis; and,
fourth, he may lack the enterprise to go out and look for the facts that his
hypothesis tells him should be found.
Psychology and Logic
Psychology is not the only science that studies reasoning; that is the
subject-matter of logic as well, and logic was in the field long before
psychology. Psychology studies the process of reasoning, while logic
checks up the result and shows whether it is valid or not. Logic cares
nothing about the exploratory process that culminates in inference, but
limits itself to inference alone.

CHAPTER XVIII

435

Inference, in logical terminology, consists in drawing a conclusion from
two given premises. The two premises are the "two facts" which, acting
together, arouse the {476} perceptive response called inference, and the
"third fact" thus perceived is the conclusion. [Footnote: The "two facts" or
premises need not be true; either or both may be assumed or hypothetical,
and still they may lead to a valid conclusion, i.e., a conclusion implicated
in the assumed premises.] Logic cares nothing as to how the premises were
found, nor as to the motive that led to the search for them, nor as to the
time and effort required, nor the difficulty encountered; these matters all
pertain to psychology.
Logic sets forth the premises and conclusion in the form of the "syllogism",
as in the old stand-by:
Major premise: All men are mortal Minor premise: Socrates is a man
Conclusion: Therefore, Socrates is mortal
The syllogism includes three "terms", which in the above instance are
"Socrates", "mortal", and "man" or "men". Logic employs the letters, S, P,
and M to symbolize these three terms in general. S is the "subject" (or, we
might say, the "object" or the "situation") about which something is
inferred. P is the "predicate", or what is inferred about S; and M is the
"middle term" which corresponds to our "yardstick" or "point of
reference", as we used those words at the beginning of the chapter. S is
compared with P through the medium of M; or, S and P are both known to
be related to M, and therefore (when the relations are of the right sort) they
are related to each other. It is part of the business of logic to examine what
relations are, and what are not, suitable for yielding a valid inference.
In symbols, then, the syllogism becomes:
Major premise: M is P Minor premise: S is M Conclusion: Therefore, S is
P
{477}

CHAPTER XVIII

436

Without confounding logic and psychology in the least, we may take this
symbolic syllogism as a sort of map, on which to trace out the different
exploratory processes that we have already described under the head of
"varieties of reasoning". To do so may make these different processes stand
out more distinctly.
In problem-solution, we start with S, a situation unsolved, i.e., without any
P. P, when found, will be the solution. We explore the situation, and find in
it M; i.e., we observe that S is M. Now M recalls our previously acquired
knowledge that M is P. Having then before us the two premises, we
perceive that S is P, and are saved.
In rationalization or explanation, we know, to start with, that S is P, and
wish to know why this is so. As before, we explore S, find M, recall that M
is P, and see that S, therefore, is P. Our final conclusion is, really, that S is
P because it is M; that January is cold because it gets little sunlight.
In application, doubt or verification, we start with the major premise, M is
P, and explore our memories for an S which, being M, should therefore be
P according to our hypothesis. If we find an S which is not P, then our final
conclusion is that the major premise is false.
Reference to our "map" indicates that there might be several other varieties
of reasoning, and there are, indeed, though they are scarcely as important
as those already mentioned. Reasoning sometimes starts with the
observation of P, which means something that might prove useful on some
future occasion. Your attention is caught by these prominent words in an
advertisement, "$100 a week!" That might come in handy on some future
occasion, and you look further to see how all that money can be attached to
S, yourself on some future occasion. You soon learn that you have only to
secure subscriptions for a certain magazine, {478} and that income may be
yours. P is the money, and M is the occupation that gives the money, while
S is yourself supposedly entering on this occupation and earning the
money. This type of reasoning is really quite common. If we see a person
making a great success of anything, we try to discover how he does it,
reasoning that if we do the same, we shall also be successful; or, if we see

CHAPTER XVIII

437

some one come to grief, we try to see how it happened, so as to avoid his
mistake and so the bad consequences of that mistake. We plan to perform
M so as to secure P, or to avoid M in the hope of avoiding P.
Sometimes, not so rarely, we have both premises handed out to us and have
only to draw the conclusion. More often, we hear a person drawing a
conclusion from only one expressed premise, and try to make out what the
missing premise can be. Sometimes this is easy, as when one says, "I like
him because he is always cheerful", from which you see that the person
speaking must like cheerful persons. But if you hear it said that such a one
"cannot be a real thinker, he is so positive in his opinions" or that another
"is unfeeling and unsympathetic from lack of a touch of cruelty in his
nature", you may have to explore about considerably before finding
acceptable major premises from which such conclusions can be deduced.
Finally, in asking what are the qualifications of a good reasoner we can
help ourselves once more by reference to the syllogistic map. To reason
successfully on a given topic, you need good major premises, good minor
premises, and valid conclusions therefrom.
(a) A good stock of major premises is necessary, a good stock of rules and
principles acquired in previous experience. Without some knowledge of a
subject, you have only vague generalities to draw upon, and your reasoning
process will be slow and probably lead only to indefinite conclusions.
{479} Experience, knowledge, memory are important in reasoning, though
they do not by any means guarantee success.
(b) The "detective instinct" for finding the right clues, and rejecting false
leads, amounts to the same as sagacity in picking out the useful minor
premises. In problem solution, you have to find both of your premises, and
often the minor premise is the first to be found and in turn recalls the
appropriate major premise. Finding the minor premise is a matter of
observation, and if you fail to observe the significant fact about the
problem, the really useful major premise may lie dormant, known and
retained but not recalled, while false clues suggest inapplicable major
premises and give birth to plenty of reasoning but all to no purpose. Some

CHAPTER XVIII

438

persons with abundant knowledge are ineffective reasoners from lack of a
sense for probability. The efficient reasoner must be a good guesser.
(c) The reasoner needs a clear and steady mental eye, in order to see the
conclusion that is implicated in the premises. Without this, he falls into
confusion and fallacy, or fails, with the premises both before him, to get the
conclusion. The "clear and steady mental eye", in less figurative language,
means the ability to check hasty responses to either premise alone, or to
extraneous features of the situation, so as to insure that "unitary response"
to the combination of premises which constitutes the perceptive act of
inference.
{480}
EXERCISES
1. Outline the chapter.
2. In what respects does the animal's solution of a problem fall short of
reasoning?
3. Give a concrete instance of reasoning belonging under each of the types
mentioned in the text.
4. How is it that superstitions such as that of Friday being an unlucky day
persist? What would be the scientific way of testing such a belief?
5. What causes tend to arouse belief, and what to arouse doubt?
6. Introspective study of the process of thinking. Attempt to solve some of
the following problems, and write down what you can observe of the
process.
(a) What is it that has four fingers and a thumb, but no flesh or bone?
(b) Why does the full moon rise about sunset?

CHAPTER XVIII

439

(c) If a book and a postage stamp together cost $1.02, and the book costs
$1.00 more than the stamp, how much does the stamp cost?
(d) A riddle: "Sisters and brothers have I none, yet this man's father is my
father's son."
(e) Prove that a ball thrown horizontally over level ground will strike the
ground at the same time, no matter how hard it is thrown.
(f) If no prunes are atherogenous, but some bivalves are atherogenous, can
you conclude that some prunes are not bivalves?
(g) Deduce, as impersonally as possible, the opinion of you held by some
other person.
REFERENCES
William James, Principles of Psychology, 1890, Vol. II, pp. 325-371. John
Dewey, How We Think, 1910.
{481}

CHAPTER XIX

440

CHAPTER XIX
IMAGINATION
MENTAL AS DISTINGUISHED FROM MOTOR MANIPULATION
From discovery we now turn to invention, from exploration to
manipulation.
The human enterprise of exploration, which we have examined under the
headings of perception and reasoning, as well as earlier under attention,
runs the gamut from simple exploratory movements of the sense organs in
looking and listening, to the elaborate scientific procedure followed in
testing hypotheses and discovering the laws of nature. Inventive or
manipulative activity runs a similar gamut from the child's play with his
toys to the creation of a work of art, the designing of a work of engineering,
the invention of a new machine, or the organization of a new government.
The distinction between the two lines of activity is that exploration seeks
what is there, and manipulation changes it to something else. Exploration
seeks the facts as they exist, while invention modifies or rearranges the
facts. The two enterprises go hand in hand, however, since facts must be
known to be manipulated, while on the other hand manipulation of an
object brings to light facts about it that could never be discovered by simple
examination. Invention is based on science and also contributes to the
advance of science.
Manipulation and exploration certainly go hand in hand in the little child's
behavior. The baby picks up his new toy, turns it about and examines it on
all sides, shakes it and is pleased if it makes a noise, drops it and is pleased
{482} with its bang on the floor. This is manipulation, certainly; but it is
also a way of exploring the properties of the toy.
Beginnings of Imagination in the Child
Beginning with grasping, turning, pushing, pulling, shaking and dropping
of objects, the child's manipulation develops in several directions. One line

CHAPTER XIX

441

of development leads to manual skill. The child learns to manage his toys
better.
A second line of development is in the direction of constructiveness. Taking
things apart and putting them together, building blocks, assembling dolls
and toy animals into "families" or "parties" setting table or arranging toy
chairs in a room, are examples of this style of manipulation, which calls
less for manual dexterity than for seeing ways in which objects can be
rearranged.
Make-believe is a third direction followed in the development of
manipulation. The little boy puts together a row of blocks and pushes it
along the floor, asserting that it is a train of cars. The little girl lays her
doll carefully in its bed, saying "My baby's sick; that big dog did bite him".
This might be spoken of as "manipulating things according to the meanings
attached to them", the blocks being treated as cars, and the doll as a sick
baby.
Perhaps a little later than make-believe to make its appearance in the child
is story-telling the fourth type of manipulation. Where in make-believe he
has an actual object to manipulate according to the meaning attached to it,
in story-telling he simply talks about persons and things and makes them
perform in his story. He comes breathless into the house with a harrowing
tale of being pursued by a hippopotamus in the woods; or he gives a
fantastic account of the doings of his acquaintances. For this he is
sometimes accused of being a "little liar"--as indeed he {483} probably is
when circumstances demand--and sometimes, more charitably, he is
described as being still unable to distinguish observation from imagination;
but really what he has not yet grasped is the social difference between his
make-believe, which no one objects to, and his story-telling, which may
lead people astray.
Both make-believe and story-telling are a great convenience to the child,
since he is able by their means to manipulate big and important objects that
he could not manage in sober reality. He thus finds an outlet for tendencies
that are blocked in sober reality--blocked by the limitations of his

CHAPTER XIX

442

environment, blocked by the opposition of other people, blocked by his own
weakness and lack of knowledge and skill. Unable to go hunting in the
woods, he can play hunt in the yard; unable to go to war with the real
soldiers, he can shoulder his toy gun and campaign all about the
neighborhood. The little girl of four years, hearing her older brothers and
sisters talk of their school, has her own "home work" in "joggity", and her
own graduation exercises.
Preliminary Definition of Imagination
In such ways as we have been describing, the little child shows
"imagination", or mental manipulation. In story-telling the objects
manipulated are simply thought of; in make-believe, though there is actual
motor manipulation of present objects, the attached meaningsare the
important matter; and in construction there is apt to be a plan in mind in
advance of the motor manipulation, as when you look at the furniture in a
room and consider possible rearrangements.
The materials manipulated in imagination are usually facts previously
perceived, and to be available for mental {484} manipulation they must
now be recalled; but they are not merely recalled--they are rearranged and
give a new result that may never have been perceived. A typical product of
imagination is composed of parts perceived at different times and later
recalled and combined, as a centaur is composed of man and horse, or a
mermaid of woman and fish. Imagination is like reasoning in being a
mental reaction; but it differs from reasoning in being manipulation rather
than exploration; reasoning consists in seeing relationships that exist
between facts, and imagination in putting facts into new relationships.
These are but rough distinctions and definitions; we shall try to do a little
better after we have examined a variety of imaginative performances.
"Imagination" and "invention" mean very much the same mental process,
though "imagination" looks rather to the mental process itself, and
"invention" more to the outcome of the process, which is a product having
some degree of novelty and originality.

CHAPTER XIX

443

Imagination, like association and like attention, is sometimes free, and
sometimes controlled. Controlled imagination is directed towards the
accomplishment of some desired result, while free imagination wanders
this way and that, with no fixed aim. Controlled imagination is seen in
planning and designing; free imagination occurs in moments of relaxation,
and may be called "play of the imagination". The free variety, as the
simpler, will be considered first.
Our study will have more point if we first remind ourselves what are the
psychological problems to be attacked in studying any mental activity.
What is the stimulus and what the response? These are the fundamental
questions. But the study of response breaks up into three subordinate
questions, regarding the tendency that is awakened, regarding the {485}
end-result obtained, and regarding the often complex process or series of
responses, that leads to the end-result.
The response in imagination we have already defined, in a general way, as
mental manipulation, and the end-result as the placing of facts into new
combinations or relationships. The stimulus consists of the facts, either
perceived at the moment or recalled from past perception, that are now
freshly related or combined. The more precise question regarding the
stimulus is, then, as to what sort of facts make us respond in an inventive or
imaginative way; and the more precise question regarding the end-result is
as to what kind of combinations or new relationships are given to the
facts--both pretty difficult questions. In regard to process, the great
question is as to how any one can possibly escape from the beaten track of
instinct and habit, and do anything new; and in regard to tendency the
question is as to what motives are awakened in inventive activity and what
satisfaction there is in the end-result. This last question, as to why we
imagine, is about the easiest to answer.
Play
Free imagination was spoken of a moment ago as a kind of play; and we
might turn this about and say that play, usually if not always, contains an
element of imagination or invention. Sometimes the child makes up new

CHAPTER XIX

444

games, very simple ones of course, to fit the materials he has to play with;
but even when he is playing a regular game, he has constantly to adapt
himself to new conditions as the game-situation changes. We may take the
child's play as the first and simplest case of free invention and ask our
questions regarding it. What are the child's play-stimuli (toys), how does he
manipulate them, what end-results does he reach, and what satisfaction
does he derive from {486} playing? We can ask these questions, but it is not
so sure that we can answer them.
What is a toy? Anything to play with. But what characteristics of an object
make it a real toy, which shall actually arouse the play response? First, it
must be such that the child can move it; and almost anything that he can
move serves, one time or another, for a plaything. But the surest stimulus is
a new toy, the element of novelty and variety being important in arousing
manipulation as it is in arousing exploration. However, to define a toy
simply as something moveable, and also new if possible, fails to satisfy the
spirit of inquiry, and about the only way to progress further is to make a
long list of toys, and classify them from the psychological point of view.
Thus we get the following classes of play-stimuli:
Little models of articles used by adults, such as tools, furniture, dishes; and
we might include here dolls and toy animals. The child's response to this
class of toys is imitative. Some psychologists have been so much impressed
with the imitative play of children and animals (as illustrated by puppies
playing fight), that they have conceived of all play as a sort of rehearsal for
the serious business of life; but this conception does not apply very well to
some of the other sorts of toy.
Noise-makers: rattle, drum, bell, horn, whistle, fire-cracker.
Things that increase your speed of locomotion, or that move you in unusual
ways, as bicycle, skate, sled, rocking-horse, swing, seesaw,
merry-go-round. Here belong also such sports as hopping, skipping,
jumping, dancing, skipping rope, vaulting, leapfrog, whirling, somersault.
The dizzy sensation resulting from stimulation of the semicircular canals is
evidently pleasant to young children, and some of their sports seem aimed

CHAPTER XIX

445

at securing a good measure of it.
{487}
Things that increase your radius of action; balls to throw or bat, bow and
arrow, sling, mirror used to throw sunlight into a distant person's eyes; and
we might include the bicycle here as well as in the preceding class.
Things that resist the force of gravity, floating, soaring, balancing,
ascending, instead of falling; or that can be made to behave in this way.
Here we have a host of toys and sports: balloons, soap bubbles, kites,
rockets, boats, balls that bounce, tops that balance while they spin, hoops
that balance while they roll, arrows shot high into the sky; climbing,
walking on the fence, swimming, swinging, seesaw again.
Things that move in surprising ways or that are automatic: toy windmills,
mechanical toys.
Things that can be opened and shut or readjusted in some similar way: a
book to turn the leaves of, a door to swing or to hook and unhook, a bag or
box to pack or unpack, water taps to turn on or off (specially on).
Plastic materials, damp sand, mud, snow; and other materials that can be
worked in some way, as paper to tear or fold, stones or blocks to pile, load
or build, water to splash or pour; and we might add here fire, which nearly
every one, child or adult, likes to manage.
Finally, playmates should really be included in a list of playthings, since
the presence of a playmate is often the strongest stimulus to arouse play.
Such being the stimulus, what is the play response? It consists in
manipulating or managing the plaything so as to produce some interesting
result. The hoop is made to roll, the kite to fly, the arrow to hit something at
a distance, the blocks are built into a tower or knocked down with a crash,
the mud is made into a "pie", the horn is sounded. Many games are
variations on pursuit and capture (or escape): tag, hide-and-seek,

CHAPTER XIX

446

prisoner's base, blind {488} man's buff, football, and we might include
chess and checkers here. Wrestling, boxing, snowballing are variations on
attack and defense. A great many are variations on action at a distance, of
which instances have already been cited from children's toys; in adult
games we find here golf, croquet, bowling, quoits, billiards, shooting. Many
games emphasize motor skill, as skipping ropes, knife, cat's cradle, usually
however with competition in skill between the different players. This
element of manual skill enters of course into nearly all games. Mental
acuteness appears in the guessing games, as well as in chess and many
games of cards. Many games combine several of the elements mentioned,
as in baseball we have action at a distance, pursuit and escape, motor skill
and activity, and a chance for "head work".
The Play Motives
Now, what is the sense of games and toys, what satisfactions do they
provide? What instincts or interests are thrown into activity? There is no
one single "play instinct" that furnishes all the satisfaction, but conceivably
every natural and acquired source of satisfaction is tapped in one play or
another. In the games that imitate fighting, some of the joy of fighting is
experienced, even though no real anger develops. In the games that imitate
pursuit and escape, some of the joy of hunting and some of the joy of
escape are awakened. In the "kissing games" that used to be common in
young people's parties when dancing was frowned upon, and in dancing
itself, some gratification of the sex instinct is undoubtedly present; but
dancing also gives a chance for muscular activity which is obviously one
source of satisfaction in the more active games. In fact, joy in motor
activity must be counted as one of the most general sources of
play-satisfaction. Another {489} general element is the love of social
activity, which we see in dancing as well as in nearly all games and sports.
Another, akin to the mere joy in motor activity, is the love of manipulation,
with which we began this whole discussion.
The "escape motive" deserves a little more notice. Though you would say at
first thought that no one could seek fear, and that this instinct could not
possibly be utilized in play, yet a great many amusements are based on

CHAPTER XIX

447

fear. The "chutes", "scenic railways", "roller coasters", etc., of the
amusement parks would have no attraction if they had no thrill; and the
thrill means fear. You get some of the thrill of danger, though you know
that the danger is not very real. Probably the thrill itself would not be
worth much, but being quickly followed by escape, it is highly satisfactory.
The joy of escape more than pays for the momentary unpleasantness of
fear. The fear instinct is utilized also in coasting on the snow, climbing,
swimming, or any adventurous sport; in all of which there is danger, but
the skilful player escapes by his own efforts. If he lost control he would get
a tumble; and that is why the sport is exciting and worth while. He has his
fear in check, to be sure, but it is awakened enough to make the escape
from danger interesting. Nothing could be much further from the truth than
to consider fear as a purely negative thing, having no positive contribution
to make to human satisfaction. Though we try to arrange the serious affairs
of life so as to avoid danger as much as possible, in play we seek such
dangers as we can escape by skilful work. The fascination of gambling and
of taking various risks probably comes from the satisfaction of the fear and
escape motive.
But of all the "instincts", it is the self-assertive or masterful tendency that
comes in oftenest in play. Competition, one form of self-assertion, is
utilized in a tremendous number of games and sports. Either the players
compete {490} as individuals, or they "choose sides" and compete as
teams. No one can deny that the joy of winning is the high light in the
satisfaction of play. Yet it is not the whole thing, for the game may have
been worth while, even if you lose. Provided you can say, "Though I did not
win, I played a good game", you have the satisfaction of having done well,
which is the mastery satisfaction in its non-competitive form.
When the baby gets a horn, he is not contented to have somebody else blow
it for him, but wants to blow it himself; and very pleased he is with himself
when he can make it speak. "See what I can do!" is the child's way of
expressing his feelings after each fresh advance in the mastery of his
playthings. Great is the joy of the boy when he, himself, can make his top
spin or his kite fly; and great is the girl's joy when she gets the knack of
skipping a rope. Great is any one's joy when, after his first floundering, he

CHAPTER XIX

448

comes to ride a bicycle, and the sense of power is enhanced in this case by
covering distance easily, and so being master of a larger environment. As
boys, I remember, we used to take great delight in the "apple thrower",
which was simply a flexible stick, sharpened at one end to hold a green
apple. With one's arm thus lengthened, the apple could be thrown to
extraordinary distances, and to see our apple go sailing over a tall tree or
striking the ground in the distance, gave a very satisfying sense of power.
All of those toys that enable you to act at a distance, or to move rapidly,
minister to the mastery impulse. Imitative play does the same, in that it
enables the child to perform, in make-believe, the important deeds of
adults. Children like to play at being grown-up, whether by wearing long
dresses or by smoking, and it makes them feel important to do what the
grown-ups do; you can observe how important they feel by the way they
strut and swagger.
{491}
All in all, there are several different ways of gratifying the self-assertive or
mastery impulse in play: always there is the toy or game-situation to
master and manage; often self-importance is gratified by doing something
big, either really or in make-believe; and usually there is a competitor to
beat.
Empathy
There is still another possible way in which play may gratify the mastery
impulse. Why do we like to see a kite flying? Of course, if it is our kite and
we are flying it, the mastery impulse is directly aroused and gratified; but
we also like to watch a kite flown by some one else, and similarly we like to
watch a hawk, a balloon or aëroplane, a rocket. We like also to watch
things that balance or float or in other ways seem to be superior to the
force of gravity. Why should such things fascinate us? Perhaps because of
empathy, the "feeling oneself into" the object contemplated. As "sympathy"
means "feeling with", "empathy" means "feeling into", and the idea is that
the observer projects himself into the object observed, and gets some of the
satisfaction from watching an object that he would get from being that

CHAPTER XIX

449

object. Would it not be grand to be a kite, would it not be masterful? Here
we stand, slaves of the force of gravity, sometimes toying with it for a
moment when we take a dive or a coast, at other times having to struggle
against it for our very lives, and all the time bound and limited by it--while
the kite soars aloft in apparent defiance of all such laws and limitations. Of
course it fascinates us, since watching it gives us, by empathy, some of the
sense of power and freedom that seems appropriate to the behavior of a
kite. Perhaps the fascination of fire is empathy of a similar sort; for fire is
power.
Having thus found the mastery impulse here, there, and {492} almost
everywhere in the realm of play, we are tempted to assume a masterful
attitude ourselves and say, "Look you! We have discovered the one and
only play motive, which is none other than the instinct of self-assertion".
Thus we should be forgetting the importance in play of danger and the
escape motive, the importance of manipulation for its own sake, and the
importance of the mere joy in muscular and mental activity. Also, we
should be overlooking the occasional presence of laughter, the occasional
presence of sex attraction, and the almost universal presence of the
gregarious and other social motives. Play gratifies many instincts, not
merely a single one.
Further, it is very doubtful whether the whole satisfaction of play activity
can be traced to the instincts, anyway, for play may bring in the native
"likes and dislikes", which we saw [Footnote: See p. 180.] to be irreducible
to instinctive tendencies; and it may bring in acquired likes and interests
developed out of these native likes. Play gives rise to situations that are
interesting and attractive to the players, though the attraction cannot be
traced to any of the instincts. The rhythm of dancing, marching, and of
children's sing-song games can scarcely be traced to any of the instincts.
The sociability of games goes beyond mere gregariousness, since it calls
for acting together and not simply for being together; and at the same time
it goes beyond competition and self-assertion, as is seen in the satisfaction
the players derive from good team work. It is true that the individual player
does not lay aside his self-assertion in becoming a loyal member of a team;

CHAPTER XIX

450

rather, he identifies himself with the team, and finds in competition with the
opposing team an outlet for his mastery impulse. But at the same time it is
obvious that self-assertion would be still more fully gratified by
man-to-man contests; and therefore the {493} usual preference of a group
of people for "choosing sides" shows the workings of some other motive
than self-assertion. The fact seems to be that coördinated group activity is
an independent source of satisfaction.
If the self-assertive impulse of an individual player is too strongly aroused,
he spoils the game, just as an angry player spoils a friendly wrestling
match or snowball fight, and just as a thoroughly frightened passenger
spoils a trip down the rapids, which was meant to be simply thrilling. The
instincts are active in play, but they must not be too active, for human play
is an activity carried on well above the instinctive level, and dependent on
motives that cannot wholly be analyzed in terms of the instincts.
Day Dreams
Daydreaming is a sort of play, more distinctly imaginative than most other
play. Simply letting the mind run, as in the instances cited under free
association, where A makes you think of B and B of C, and so on--this is
not exactly daydreaming, since there is no "dream", no castle in the air nor
other construction, but simply a passing from one recalled fact to another.
In imaginative daydreaming, facts are not simply recalled but are
rearranged or built together into a story or "castle" or scheme. A daydream
typically looks toward the future, as a plan for possible doing; only, it is
not a serious plan for the future--which would be controlled
imagination--nor necessarily a plan which could work in real life, but
merely play of imagination. If we ask the same questions here as we did
regarding child's play, we find again that it is easier to define the
end-result and the source of satisfaction in daydreaming than it is to define
the stimulus or the exact nature of the imaginative process.
{494}

CHAPTER XIX

451

Daydreams have some motive force behind them, as can be judged from the
absorption of the dreamer in his dream, and also from an examination of
the end-results of this kind of imagination. Daydreams usually have a hero
and that hero is usually the dreamer's self. Sometimes one is the
conquering hero, and sometimes the suffering hero, but in both cases the
recognized or unrecognized merit of oneself is the big fact in the story, so
that the mastery motive is evidently finding satisfaction here as well as in
other forms of play. Probably the conquering hero dream is the commoner
and healthier variety. A classical example is that of the milkmaid who was
carrying on her head a pail of milk she had been given. "I'll sell this milk
for so much, and with the money buy a hen. The hen will lay so many eggs,
worth so much, for which I will buy me a dress and cap. Then the young
men will wish to dance with me, but I shall spurn them all with a toss of the
head." Her dream at this point became so absorbing as to get hold of the
motor system and call out the actual toss of the head--but we are not after
the moral just now; we care simply for the dream as a very true sample of
many, many daydreams. Such dreams are a means of getting for the
moment the satisfaction of some desire, without the trouble of real
execution; and the desire gratified is very often some variety of
self-assertion. Sometimes the hero is not the dreamer's self, but some one
closely identified with himself. The mother is prone to make her son the
hero of daydreams and so to gratify her pride in him.
The "suffering hero" daydream seems at first thought inexplicable, for why
should any one picture himself as having a bad time, as misunderstood by
his best friends, ill-treated by his family, jilted by his best girl, unsuccessful
in his pet schemes? Why should any one make believe to be worse off than
he is; what satisfaction can that {495} be to him? Certainly, one would say,
the mastery motive could not be active here. And yet--do we not hear
children boasting of their misfortunes? "Pooh! That's only a little scratch;
I've got a real deep cut." My cut being more important than your scratch
makes me, for the moment, more important than you, and gives me a
chance to boast over you. Older people are known sometimes to magnify
their own ailments, with the apparent aim of enhancing their own
importance. Perhaps the same sort of motive underlies the suffering hero
daydream.

CHAPTER XIX

452

I am smarting, let us suppose, from a slight administered by my friend; my
wounded self-assertion demands satisfaction. It was a very little slight, and
I should make myself ridiculous if I showed my resentment. But in
imagination I magnify the injury done me, and go on to picture a dreadful
state of affairs, in which my friend has treated me very badly indeed, and
perhaps deserted me. Then I should not be ridiculous, but so deeply
wronged as to be an important person, one to be talked about; and thus my
demand for importance and recognition is gratified by my daydream.
Usually the suffering hero pictures himself as in the right, and animated by
the noblest intentions, though misunderstood, and thus further enhances his
self-esteem; but sometimes he takes the other tack and pictures himself as
wicked--but as very, very wicked, a veritable desperado. It may be his
self-esteem has been wounded by blame for some little meanness or
disobedience, and he restores it by imagining himself a great, big,
important sinner instead of a small and ridiculous one. In adolescence, the
individual's growing demand for independence is often balked by the
continued domination of his elders, and he rebelliously plans quite a career
of crime for himself. He'll show them! They won't be so pig-headedly
complacent when they know they have driven him to the bad. You can tell
by the looks of {496} a person whose feelings are hurt that he is imagining
something; usually he is imagining himself either a martyr or a desperado,
or some other kind of suffering hero, often working up into a conquering
hero in the end, when, his self-esteem restored, he is ready to be friends
again. The suffering hero daydream is a "substitute reaction", taking the
place of a fight or some other active self-assertion. The conquering hero
daydream is often motivated in the same way; for example, our friend the
milkmaid would not have been so ready to scorn the young men with a toss
of the head if she had not been feeling her own actual inferiority and lack
of fine clothes. The daydream makes good, in one way or another, for
actual inability to get what we desire. The desire which is gratified in the
play of imagination belongs very often indeed under the general head of
self-assertion; but when one is in love it is apt to belong under that head.
Love dreams of the agreeable sort need no further motivation; but the
unpleasant, jealous type of love dream is at the same time a suffering hero
dream, and certainly involves wounded self-assertion along with the sexual

CHAPTER XIX

453

impulse. Probably the self-asserting daydream is the commonest variety,
take mankind as a whole, with the love dream next in order of frequency.
But there are many other sorts. There is the humor daydream, illustrated by
the young person who suddenly breaks into a laugh and when you ask why
replies that she was thinking how funny it would be if, etc., etc. She is very
fond of a good laugh, and not having anything laughable actually at hand
proceeds to imagine something. So, a music lover may mentally rehearse a
piece when he has no actual music to enjoy; and if he has some power of
musical invention, he may amuse himself, in idle moments, by making up
music in his head; just as one who has some ability in decorative design
may fill his idle moments by concocting new designs on paper. {497} When
vacation time approaches, it is hard for any one, student or professor, to
keep the thoughts from dwelling on the good times ahead, and getting some
advance satisfaction. Thus all kinds of desires are gratified in imagination.
Worry
Do we have fear daydreams, as we have amusements utilizing the fear and
escape motive? Yes, sometimes we imagine ourselves in danger and plan
out an escape. One individual often amuses himself by imagining he is
arrested and accused of some crime, and figuring out how he could
establish an alibi or otherwise prove his innocence. But fear daydreams
also include worry, which seems at first to be an altogether unpleasant
state of mind, forced upon us and not indulged in as most daydreams are.
Yet, as the worry is often entirely needless, it cannot be said to be forced
upon a person, but must have some motive. There must be some satisfaction
in it, in spite of all appearance.
Some abnormal cases of worry suggest the theory that the fear is but a
cloak for unacknowledged desire. Take this extreme case. A young man,
"tied to the apron-strings" of a too affectionate and too domineering
mother, has a strong desire to break loose and be an independent unit in
the world; but at the same time, being much attached to his mother, he is
horrified by this desire. She goes on a railroad journey without him--just an
ordinary journey with no special danger--but all the time she is away he is
in an agony of suspense lest the train may be wrecked. Such an abnormal

CHAPTER XIX

454

degree of worry calls for explanation. Well--did not the worry perhaps
conceal a wish, a wish that the train might be wrecked? So he would be set
free without any painful effort on his part; and he {498} was a young man
who shrank from all effort. The psychopathologist who studied the case
concluded that this was really the explanation of the worry.
If, however, we take such extreme cases as typical and cynically apply this
conception to all worries, we shall make many mistakes. A student worries
unnecessarily about an examination; therefore, he desires to fail. A mother
worries because her child is late in getting home; therefore, she wants to be
rid of that child. Thus, by being too psychopathological, we reach many
absurd conclusions in everyday life; for it is the child that is loved that is
worried over, and it is the examination that the student specially wishes to
pass that he fears he has flunked.
Worry is a sort of substitute reaction, taking the place of real action when
no real action is possible. The student has done all he can do; he has
prepared for the examination, and he has taken the examination; now there
is nothing to do except wait; so that the rational course would be to dismiss
the matter from his mind; if he cannot accomplish that, but must do
something, then the only thing he can do is to speculate and worry. So also
the mother, in her uncertainty regarding her child, is impelled to action,
and if she knew of any real thing to do she would do it and not worry; but
there is nothing to do, except in imagination. Worry is fundamentally due to
the necessity of doing something with any matter that occupies our mind; it
is an imaginative substitute for real action.
But worry may be something of an indoor sport as well. Consider this--if
the mother really believed her child had fallen into the pond, she would
rush to pull him out; but while she is worrying for fear he may have fallen
in, she remains at home. Really she expects to see him come home any
minute, but by conjuring up imaginary dangers she is getting ready to make
his home-coming a great relief instead {499} of a mere humdrum matter.
She is "shooting the chutes", getting the thrill of danger with escape fully
expected.

CHAPTER XIX

455

The normal time for a daydream is the time when there is no real act to be
performed. A strong man uses it as the amusement of an idle moment and
promptly forgets it. But one who is lacking in force, especially the personal
force needed in dealing with other people, may take refuge in daydreams as
a substitute for real doing. Instead of hustling for the money he needs he
may, like Micawber, charm himself with imagining the good opportunities
that may turn up. Instead of going and making love to the lady of his
choice, he shyly keeps away from her and merely dreams of winning her.
He substitutes imaginary situations for the real facts of his life, and
gratifies his mastery motive by imaginary exploits. He invents imaginary
ailments to excuse his lack of real deeds. He conjures up imaginary
dangers to worry over. All this is abuse of imagination.
Dreams
Let us turn now from daydreams to dreams of the night. These also are play
of imagination, even freer from control and criticism than the daydream. In
sleep the cortical brain functions sink to a low level, and perhaps cease
altogether in the deepest sleep. Most of the dreams that are coherent
enough to be recalled probably occur just after we have gone to sleep or
just before we wake up, or at other times when sleep is light. At such times
the simpler and more practised functions, such as recall of images, can go
on, though criticism, good judgment, reasoning, and all that sort of delicate
and complex activity, do not occur. Daytime standards of probability,
decorum, beauty, wit, and excellence of any sort are in abeyance;
consistency is thrown to the winds, the scenes being shifted in the middle of
a {500} speech, and a character who starts in as one person merging
presently into somebody else. Dreams follow the definition of imagination
or invention, in that materials recalled from different contexts are put
together into combinations and rearrangements never before experienced.
The combinations are often bizarre and incongruous.
Perhaps the most striking characteristic of dreams is their seeming reality
while they last. They seem real in spite of their incongruity, because of the
absence of critical ability during sleep. In waking life, when the sight of one
object reminds me of another and calls up an image of that other, I know

CHAPTER XIX

456

that the image is an image, and I know I have thought of two different
things. In sleep the same recall by association occurs, but the image is
forthwith accepted as real; and thus things from different sources get
together in the same dream scene, and a character who reminds us of
another person forthwith becomes that other person. We are not mentally
active enough in sleep to hold our images apart. Associative recall, with
blending of the recalled material, and with entire absence of criticism,
describes the process of dreaming.
What is the stimulus, to which the dream responds? Sometimes there is an
actual sensory stimulus, like the alarm clock or a stomach ache; and in this
case the dream comes under the definition of an illusion; it is a false
perception, more grotesquely false than most illusions of the day. A boy
wakes up one June morning from a dream of the Day of Judgement, with
the last trump pealing forth and blinding radiance all about--only to find,
when fully awake, that the sun is shining in his face and the brickyard
whistle blowing the hour of four-thirty a.m. This was a false perception.
More often, a dream resembles a daydream in being a train of thoughts and
images without much relation to present sensory stimuli; and then the
dream {501} would come under the definition of hallucination instead of
illusion.
Sometimes a sensory stimulus breaks in upon a dream that is in progress,
and is interpreted in the light of this dream. In one experiment, the
dreamer, who was an authoress, was in the midst of a dream in which she
was discussing vacation plans with a party of friends, when the
experimenter disturbed her by declaiming a poem; in her dream this took
the form of a messenger from her publisher, reciting something about a
contract which seemed a little disturbing but which she hoped (in the
dream) would not interfere with her vacation. Maury, an early student of
this topic, was awakened from a feverish dream of the French Revolution
by something falling on his neck; this, under the circumstances, he took to
be the guillotine.
Now, why is a dream? What satisfaction does it bring to the dreamer? Or
shall we say that it is merely a mechanical play of association, with no

CHAPTER XIX

457

motivation behind it? Dreams are interesting while they last, sometimes
fearful, sometimes angry, sometimes amorous, otherwise not very
emotional but distinctly interesting, so that many people hate to have a
dream broken up by awaking. It seems likely, then, that dreams are like
daydreams in affording gratification to desires. They are "wish-fulfilling",
to borrow a term from Freud's theory of dreams, soon to be considered.
A boy dreams repeatedly of finding whole barrels of assorted jackknives,
and is bitterly disappointed every time to awake and find the knives gone;
so that finally he questions the reality of the dream, but pinching himself (in
the dream) concludes he must be awake this time. An adult frequently
dreams of finding money, first a nickel in the dust, and then a quarter close
by, and then more and more, till he wakes up and spoils it all. Such dreams
are {502} obviously wish-fulfilling, as are also the sex dreams of sexually
abstinent persons, or the feasting dreams of starving persons, or the polar
explorer's recurring dream of warm, green fields. An eminent psychologist
has given a good account of a dream which he had while riding in an
overcrowded compartment of a European train, with the window closed
and himself wedged in tightly far from the window. In this uncomfortable
situation he dropped asleep and dreamed that he had the seat next to the
window, had the window open and was looking out at a beautiful
landscape. In all these cases the wish gratified in the dream is one that has
been left unsatisfied in the daytime, and this is according to the famous
passage, slightly paraphrased, "What a man hath, why doth he yet dream
about?" The newly married couple do not dream of each other. We seldom
dream of our regular work, unless for some reason we are disturbed over
it. The tendencies that are satisfied during the day do not demand
satisfaction in dreams; but any tendency that is aroused during the day
without being able to reach its conclusion is likely to come to the surface in
a dream.
Any sort of desire or need, left unsatisfied in the day, may motivate a
dream. Desire for food, warmth, sex gratification, air, money, etc., have
been exemplified in dreams already cited. Curiosity may be the motive, as
in the case of an individual, who, having just come to live in Boston, was
much interested in its topography, and who saw one day a street car

CHAPTER XIX

458

making off in what seemed to him a queer direction, so that he wondered
where it could be going and tried unsuccessfully to read its sign. The next
night he dreamed of seeing the car near at hand and reading the sign,
which, though really consisting of nonsense names, satisfied his curiosity
during the dream.
The mastery motive, so prominent in daydreams, can be detected also in
many sleep dreams. There are dreams in {503} which we do big things--tell
excruciatingly funny jokes, which turn out when recalled next day to be
utterly flat; or improvise the most beautiful music, which we never can
recall with any precision, but which probably amounted to nothing; or play
the best sort of baseball. The gliding or flying dream, which many people
have had, reminds one of the numerous toys and sports in which defiance of
gravity is the motive; and certainly it gives you a sense of power and
freedom to be able, in a dream, to glide gracefully up a flight of stairs, or
step with ease from the street upon the second-story balcony. One dream
which at first thought cannot be wish-fulfilling perhaps belongs under the
mastery motive: The dreamer sees people scurrying to cover, looks up and
sees a thunderstorm impending; immediately he is struck by lightning and
knocked down in the street; but he finds he can rise and walk home, and
seems to have suffered no harm except for a black blotch around one eye.
Now, any man who could take lightning that way would be proud to wear
the scar. So the dream was wish-fulfilling, and the wish involved was, as
often, the self-assertive impulse.
This last dream is a good one, however, for pointing another moral. We
need not suppose that the dreamer was aiming at the denouement from the
beginning of the dream. Dreams have no plot in most instances; they just
drift along, as one thing suggests another. The sight of people running to
cover suggested a thunderstorm, and that suggested that "I might get
struck", as it would in the daytime. Now, the dream mentality, being short
on criticism, has no firm hold on "may be" and "might be", but slides
directly into the present indicative. The thought of being struck is being
struck, in a dream. So we do not need to suppose that the dreamer pictured
himself as struck by lightning in order to have the satisfaction of coming off
{504} whole and bragging of the exploit. In large measure the course of a

CHAPTER XIX

459

dream is determined by free association; but the mastery motive and other
easily awakened desires act as a sort of bias, facilitating certain outcomes
and inhibiting others.
But there are unpleasant dreams, as well as pleasant. There are fear
dreams, as well as wish dreams. A child who is afraid of snakes and
constantly on the alert against them when out in the fields during the day,
dreams repeatedly of encountering a mass of snakes and is very much
frightened in his sleep. Another child dreams of wolves or tigers. A person
who has been guilty of an act from which bad consequences are possible
dreams that those consequences are realized. The officer suffering from
nervous war strain, or "shell shock", often had nightmares in which he was
attacked and worsted by the enemy. Since Freud has never admitted that
dreams could be fear-motived, holding that here, as in worry, the fear is
but a cloak for a positive desire, some of his followers have endeavored to
interpret these shell-shock nightmares as meaning a desire to be killed and
so escape from the strain. To be consistent, they would have also to hold
that the child, who of all people is the most subject to terrifying dreams,
secretly desires death, though not avowing this wish even to himself. This
would be pushing consistency rather far, and it is better to admit that there
are real fear dreams, favored by indigestion or nervous strain, but
sometimes occurring simply by the recall of a fear-stimulus in the same
way that anything is recalled, i.e., through association.
A large share of dreams does not fit easily into any of the classes already
described. They seem too fantastic to have any personal meaning. Yet they
are interesting to the dreamer, and they would be worth going to see if they
could be reproduced and put on the stage. Isn't that sufficient {505} excuse
for them? May they not be simply a free play of imagination that gives
interesting results because of its very freedom from any control or
tendency, and because of the vividness of dream imagery?
Freud's Theory of Dreams
Just at this point we part company with Freud, whose ideas on dreams as
wish-fulfilments we have been following, in the main. Not that Freud would

CHAPTER XIX

460

OK our account of dreams up to this point. Far from it. It would seem to
him on too superficial a level altogether, dealing as it does with conscious
wishes and with straightforward fulfilments. It has left out of account the
"Unconscious" and its symbolisms. The Freudian would shake his head at
our interpretation of the lightning dream, and say, "Oh, there is a good
deal more in that dream. We should have to analyze that dream, by letting
the dreamer dwell on each item of it and asking himself what of real
personal significance the stroke of lightning or the scar around the eye
suggested to him. He would never be able by his unaided efforts to find the
unconscious wishes fulfilled in the dream, but under the guidance of the
psychoanalyst, who is a specialist in all matters pertaining to the
Unconscious, he may be brought to realize that his dream is the symbolic
expression of wishes that are unconscious because they have been
suppressed".
The Unconscious, according to Freud, consists of forbidden wishes--wishes
forbidden by the "Censor", which represents the moral and social
standards of the individual and his critical judgment generally. When the
Censor suppresses a wish, it does not peaceably leave the system but sinks
to an unconscious state in which it is still active and liable to make itself
felt in ways that get by the Censor because they are disguised and
symbolic. An abnormal worry {506} is such a disguise, a queer idea that
haunts the nervous person is another, "hysterical" paralysis or blindness is
another.
In normal individuals the dream life is held by Freud to be the chief outlet
for the suppressed wishes; for then the Censor sleeps and "the mice can
play". Even so, they dare not show themselves in their true shape and color,
but disguise themselves in innocent-appearing symbolism. That lightning
may stand for something much more personal. Let your mind play about
that "being knocked down by lightning and getting up again", and ask
yourself what experience of childhood it calls up.--Well, I remember the
last time my father whipped me and I came through defiant, without
breaking down as I always had before on similar occasions.--Yes, now we
are on the track of something. The lightning symbolizes your father and his
authority over you, which as a child you resented. You were specially

CHAPTER XIX

461

resentful at your father's hold on your mother, whom you regarded as
yours, your father being a rival with an unfair advantage. Your sex impulse
was directed towards your mother, when you were a mere baby, but you
soon came to see (how, Freud has never clearly explained) that this was
forbidden, and that your father stood in the way. You resented this, you
hated your father, while at the same time you may have loved him, too; so
this whole complex and troublesome business was suppressed to the
Unconscious, whence it bobs up every night in disguise. You may dream of
the death of some one, and on analysis that some one is found to represent
your father, whom as a child you secretly wished out of the way; or that
some one may stand for your younger brother, against whom you, had a
standing grudge because he had usurped your place as the pet of the
family. These childish wishes are the core of the Unconscious and help to
motivate all dreams, but more recently suppressed {507} wishes may also
be gratified in dream symbolism. A man may "covet his neighbor's wife",
but this is forbidden, unworthy, and false to the neighbor who is also his
friend. The wish is disavowed, suppressed, not allowed in the waking
consciousness; but it gratifies itself symbolically in a dream; the neighbor's
wife not appearing at all in the dream, but the neighbor's automobile
instead, which the neighbor cannot run properly, while the dreamer
manages it beautifully.
Freud has claimed the dream as his special booty, and insists that all
dreams are wish-fulfilments, even those that seem mere fantastic play of
imagination, since, as he sees it, no mental activity could occur except to
gratify some wish. Further, he holds, most if not all dreams are fulfilments
of suppressed wishes, and these are either sex or spite wishes, the spite
wishes growing out of the interference of other people with our sex wishes.
The objection to Freud's theory of dreams is, first, that he fails to see how
easy-running the association or recall mechanism is. It isn't necessary to
look for big, mysterious driving forces, when we know that A makes you
think of B, and B of C, with the greatest ease. The dreamer isn't laboring,
he is idly playing, and his images come largely by free association, with
personal desires giving some steer.

CHAPTER XIX

462

Another objection is that Freud overdoes the Unconscious; suppressed
wishes are usually not so unconscious as he describes them; they are
unavowed, unnamed, unanalyzed, but conscious for all that. It is not so
much the unconscious wish that finds outlet in dreams and daydreams, as
the unsatisfied wish, which may be perfectly conscious.
Another very serious objection to Freud is that he overdoes the sex motive
or "libido". He says there are two main tendencies, that of self-preservation
and that of reproduction, but that the former is ordinarily not much subject
to suppression, while the latter is very much under the {508} social ban.
Consequently the Unconscious consists mostly of suppressed sex wishes.
Evidently, however, Freud's analysis of human motives is very incomplete.
He does not clearly recognize the self-assertive tendency, which, as a
matter of fact, is subjected to much suppression from early childhood all
through life, and which undoubtedly has as much to do with dreams, as it
has with daydreams. Freud has given an "impressionistic" picture, very
stimulating and provocative of further exploration, but by no means to be
accepted as a true and complete map of the region.
Autistic Thinking
Dreaming, whether awake or asleep, is free imagination. It does not have
to check up with any standard. So long as it is interesting at the moment
and gratifies the dreamer in any way, it serves its purpose. Sometimes the
daydreamer exercises some control, breaking off a spiteful or amorous
dream because he thinks it had better not be indulged; but in this he ceases
to be simply a daydreamer. Daydreaming, by itself, is an example of what
is called "autistic thinking", which means thinking that is sufficient unto
itself, and not subjected to any criticism. Autistic thinking gratifies some
desire and that is enough for it. It does not submit to criticism from other
persons nor from other tendencies of the individual, nor does it seek to
square itself with the real world.
Autistic thinking, indulged in by every imaginative person in moments of
relaxation, is carried to an absurd extreme by some types of insane
individuals. One type withdraws so completely from reality as to be

CHAPTER XIX

463

inaccessible in the way of conversation, unresponsive to anything that
happens, entirely immersed in inner imaginings. Others, while living in the
world about them, transform it into a make-believe {509} world by
attaching meanings to things and persons as suits themselves. This
institution, in which the subject is confined, is his royal palace, the doctors
are his officials, the nurses his wives, "thousands of them, the most
beautiful women in creation". Or the delusion may take the line of the
"suffering hero", the subject imagining himself a great man shut up in this
place by the machinations of his enemies; the doctors are spies and enemy
agents, and the nurses also act suspiciously; his food is poisoned, and he is
kept in a weak and helpless condition, all out of fear of him. It is impossible
to argue the patient out of his delusions by pointing out to him how clearly
they conflict with reality; he evades any such test by some
counter-argument, no matter how flimsy, and sticks to his dream or
make-believe.
Autistic thinking is contrasted with realistic thinking, which seeks to check
up with real facts; it may be contrasted also with socialized thinking, which
submits to the criticism of other people; and it may even be contrasted with
self-criticized thinking, in which the individual scrutinizes what he has
imagined, to see whether it is on the whole satisfactory to himself, or
whether it simply gratified a single or momentary impulse that should be
balanced off by other tendencies.
Invention and Criticism
"Criticism"--the word has been used repeatedly, and it is time it gave an
account of itself. Criticism evidently demands balancing off one desire by
another. One tendency gets criticized by running afoul of another tendency,
one idea by conflicting with another idea. We concoct a fine joke to play on
our friend; but then the thought comes to us that he may not take it kindly;
we don't want to break with our friend, and so we regretfully throw our
promising invention on the scrap heap. That is self-criticism, the {510}
balancing off of one impulse by another. Self-criticism is obnoxious to the
natural man, who prefers to follow out any tendency that has been aroused
till it reaches its goal; but he learns self-criticism in the hard school of

CHAPTER XIX

464

experience. For plenty of criticism is directed upon the individual from
without.
Criticism is directed upon him by the facts of the real world, so soon as he
tries to act out what he has imagined. Often his invention will not work, his
plan does not succeed, and he is involved in chagrin and even pain. He
must perforce cast away his plan and think up a new one. At this point the
"weak brother" is tempted to give up trying, and take refuge in autistic
thinking, but the stronger individual accepts the challenge of reality. He
sees that an invention is not satisfactory unless it will really work, and sets
about learning what will work and what not, so accumulating observations
that later enable him to criticize his own ideas, to some extent, before
trying them out on real things.
Criticism is directed upon the individual from the side of other people, who
from the day he first begins to tell his childish imaginings, are quite free
with their objections. Humiliated by this critical reception of his ideas, the
individual may resolve to keep them to himself for the future, and draw
away, again, towards autistic thinking; or, more forcefully, he may exert
himself to find some idea that will command the approval of other people.
If he can take rebuffs goodnaturedly, he soon finds that social criticism can
be a great help, that two heads are better than one in planning any
invention that needs to work. He accumulates knowledge of what will pass
muster when presented to other people, and thus again learns
self-criticism.
Self-criticism is helped by such rules as to "think twice", to "sleep on it
before deciding", to "drop the matter for a time and come back to it and see
whether it still looks {511} the same". When you are all warmed up over an
idea, its recency value gives it such an advantage over opposing ideas that
they have no chance, for the moment, of making themselves felt in the line
of criticism.
I once heard the great psychologist, and great writer, William James, make
a remark that threw some light on his mode of writing. In the evening, he
said, after warming up to his subject, he would write on and on till he had

CHAPTER XIX

465

exhausted the lead he was following, and lay the paper aside with the
feeling, "Good! Good! That's good". The next morning, he said, it might not
seem good at all. This calls to mind the old advice to writers about its being
"better to compose with fury and correct with phlegm than to compose with
phlegm and correct with fury". The phlegmatic critical attitude interferes
considerably with the enthusiastic inventive activity. Give invention free
rein for the time being, and come around with criticism later.
Some over-cautious and too self-critical persons, though rather fertile in
ideas, never accomplish much in the way of invention because they cannot
let themselves go. Criticism is always at their elbow, suggesting doubts and
alternatives and preventing progress in the creative activity, instead of
biding its time and coming in to inspect the completed result. For a similar
reason, much of the best inventive work--writing, for example, or
painting--is done in prolonged periods of intense activity, which allow time
for invention to get warmed to its task, when it takes the bit in its teeth and
dashes off at a furious speed, leaving criticism to trail along behind.
Invention in the service of art or of economic and social needs is controlled
imagination, realistic, socialized, subjected to criticism. It cannot afford to
be autistic, but must meet objective or social standards. Mechanical
inventions must work when translated into matter-of-fact wood and iron,
and {512} must also pass the social test of being of some use. Social
inventions of the order of institutions, laws, political platforms and slogans,
plans of campaign, must "work" in the sense of bringing the desired
response from the public. Social imagination of the very important sort
suggested by the proverbs, "Seeing ourselves as others see us", or "Putting
ourselves in the other fellow's place"--for it is only by imagination that we
can thus get outside of our own experience and assume another point of
view--must check up with the real sentiments of other people.
The Enjoyment of Imaginative Art
It requires imagination to enjoy art as well as to produce it. The producer
of the work of art puts the stimuli before you, but you must make the
response yourself, and it is an inventive response, not a mere repetition of

CHAPTER XIX

466

some response you have often made. The novelist describes a character for
you, and you must respond by putting together the items in the description
so as to conceive of a character you have never met. The painter groups his
figures before you, but you must get the point of the picture for yourself.
The musical composer provides a series of chords, but you must get the
"hang" of the passage for yourself, and if he has introduced a novel effect,
it may not be easy to find any beauty in it, at least on the first hearing.
Art, from the consumer's side, is play. It is play of the imagination, with the
materials conveniently presented by the artist. Now, as art is intended to
appeal to a consumer (or enjoyer), the question as to sources of satisfaction
in the enjoyment of art is fundamental in the whole psychology of art,
production as well as consumption.
We have the same questions to ask regarding the enjoyment of a novelas
regarding a daydream. Novel-reading is daydreaming with the materials
provided by the {513} author, and gratifies the same motives. A novel to be
really popular must have a genuine hero or heroine--some one with whom
the reader can identify himself. The frequency of novels in which the hero
or heroine is a person of high rank, or wins rank or wealth in the course of
the story, is a sign of appeal to the mastery motive. The humble reader is
tickled in his own self-esteem by identifying himself for the time with the
highborn or noble or beautiful character in the story. The escape motive
also is relied upon to furnish the excitement of the story, which always
brings the hero into danger or difficulty and finally rescues him, much to
the reader's relief. Love stories appeal, of course, to the sex impulse,
humorous stories to laughter, and mystery stories to curiosity. Cynical
stories, showing the "pillars of society" in an ignoble light, appeal to the
self-assertive impulse of the reader, in that he is led to apply their teaching
to pretentious people whom he knows about, and set them down a peg, to
his own relative advancement. But here again we have to insist, as under
the head of sports and daydreams, that interests of a more objective kind
are also gratified by a good work of fiction. A story that runs its logical
course to a tragic end is interesting as a good piece of workmanship, and
as an insight into the world. We cannot heartily identify ourselves with
Hamlet or Othello, yet we should be sorry to have those figures erased

CHAPTER XIX

467

from our memories; they mean something, they epitomize world-facts that
compel our attention.
The appeal of art is partly emotional.
A very great work of art, the Apollo Belvedere or the Sistine Madonna,
when you suddenly come upon it in walking through a gallery, may move
you almost or quite to tears. Beautiful music, and not necessarily sad music
either, has the same effect. Why this particular emotion should be aroused
is certainly an enigma. "Crying because you are so happy" is similar {514}
but itself rather inexplicable. In many other cases, the emotional appeal of
art is easily analyzed. The pathetic appeals straightforwardly to the grief
impulse, the humorous to the laughter impulse, the tragic to fear and
escape. The sex motive is frequently utilized in painting and sculpture as
well as in literature.
Art makes also an intellectual appeal.
It is satisfying partly because of this appeal, as is clear when we remember
that many great works of art require mental effort in order to grasp and
appreciate them. You must be wide-awake to follow a play of Shakespeare;
you must puzzle out the meaning of a group painting before fully enjoying
it; you must study some of the detail of a Gothic cathedral before getting
the full effect; music may be too "classical" for many to grasp and follow.
Unless, then, the artist has made a great mistake, the mental activity which
he demands from his public must contribute to the satisfaction they derive
from his works. If his appeal were simply to their emotions, any intellectual
labor would be a disturbing element. The intellectual appeal is partly to
objective interests in the thing presented, partly to interest in the
workmanship, and partly to the mastery motive in the form of problem
solution.
Perhaps we do not often think of a fine painting or piece of music as a
problem set us for solution, but it is that, and owes part of its appeal to its
being a problem. To "get the hang of" a work of art requires some effort
and attention; if the problem presented is too difficult for us, the work of art

CHAPTER XIX

468

is dry; if too easy, it is tame.
The mastery motive is probably as important in the enjoyment of art as it is
in play and dreaming. It comes in once in the joy of mastering the
significance of the work of art, and again in self-identification with the fine
characters portrayed.
{515}
Empathy in art enjoyment.
At first thought, some forms of art, as architecture, seem incapable of
making the just-mentioned double appeal to the mastery motive.
Architecture can certainly present problems for the beholder to solve, but
how can the beholder possibly identify himself with a tower or arch? If,
however, we remember the "empathy" that we spoke of under the head of
play, we see that the beholder may project himself into the object,
unintentionally of course, and thus perhaps get satisfaction of his mastery
impulse.
Look at a pillar, for example. If the pillar is too massive for the load
supported, it gives you the unsatisfactory impression of doing something
absurdly small for your powers. If on the contrary the pillar is too slender
for the load that seems to rest upon it, you get the feeling of strain and
insecurity; but if it is rightly proportioned, you get the feeling of a worthy
task successfully accomplished. The pillar, according to empathy, pleases
you by arousing and gratifying your mastery impulse; and many other
architectural effects can be interpreted in the same way.
Empathy can perhaps explain the appeal of the big in art and nature. In
spite of the warnings put forth against thinking of mere bigness as great or
fine, we must admit that size makes a very strong appeal to something in
human nature. The most perfect miniature model of a cathedral, however
interesting and attractive as it rests on the table before you, fails to make
anything like the impression that is made by the giant building towering
above you. Big trees, lofty cliffs, grand canyons, tremendous waterfalls,

CHAPTER XIX

469

huge banks of clouds, the illimitable expanse of the sea, demonstrate
cogently the strong appeal of the big. Perhaps the big is not necessarily
grand, but the grand or sublime must be big or somehow suggest bigness.
The question is, then, what it is in us that responds to the appeal of the big.
{516}
Perhaps it is the submissive tendency that is aroused. This great mountain,
so far outclassing me that I am not tempted in the least to compete with it,
affords me the joy of willing submission. The escape motive may come in
along with submissiveness--at the first sight of the mountain a thrill of fear
passes over me, but I soon realize that the mountain will not hurt me in
spite of its awe-inspiring vastness; so that my emotion is blended of the
thrill of fear, the relief of escape, and the humble joy of submission. That is
one analysis of the esthetic effect of bigness.
Empathy suggests a very different analysis. According to this, projecting
myself into the mountain, identifying myself with it, I experience the
sensation of how it feels to be a mountain. It feels big--I feel big. My
mastery impulse is gratified. To decide between these two opposing
interpretations ought to be possible from the behavior or introspection of a
person in the presence of some big object. If he feels insignificant and
humble and bows reverently before the object, we may conclude that the
submissive tendency is in action; but if the sight of the grand object makes
him feel strong and fine, if he throws out his chest and a gleam comes into
his eye, then everything looks like the mastery motive. Quite possibly, the
effect varies with the person and the occasion.
We have to think of art as a great system or collection of inventions that
owes its existence to its appeal to human nature, and that has found ways,
as its history has progressed, of making its appeal more and more varied.
Art is a type in these respects of many social enterprises, such as sport,
amusement, and even such serious matters as politics and industry. Each of
these is a collection of inventions that persists because it appeals to human
impulses, and each one appeals to a variety of different impulses.

CHAPTER XIX

470

{517}
The Psychology of Inventive Production
To the consumer, art is play, but to the producer it is work, in the sense that
it is directed towards definite ends and has to stand criticism according as
it does or does not reach those ends. What is true of the producer of art
works is true also of other inventors, and we may as well consider all sorts
of controlled imagination together.
In spite of the element of control that is present in productive invention, the
really gifted inventor seems to make play of his work to a large extent.
Certainly the inventive genius does not always have his eyes fixed on the
financial goal, nor on the appeal which his inventions are to make to the
public. It is astonishing to read in the lives of inventors what a lot of
comparatively useless contrivances they busied themselves with, apparently
from the pure joy of inventing. One prolific writer said that he "never
worked in his life, only played". The inventor likes to manipulate his
materials, and this playfulness has something to do with his originality, by
helping to keep him out of the rut.
That "necessity is the mother of invention" is only half of the truth; it points
to the importance of a directive tendency, but fails to show how the
inventor manages to leave the beaten path and really invent. Necessity, or
some desire, puts a question, without which the inventor would not be likely
to find the answer; but he needs a kind of flexibility or playfulness, just
because his job is that of seeing things in a new light. We must allow him to
toy with his materials a bit, and even to be a bit "temperamental", and not
expect him to grind out works of art or other inventions as columns of
figures are added.
When inventive geniuses have been requested to indicate their method, they
have been able to give only vague hints. How does the musical composer,
for example, free himself of {518} all the familiar pieces and bring the
notes into a fresh arrangement? All that he can tell about it is usually that
he had an "inspiration"; the new air simply came to him. Now, of course

CHAPTER XIX

471

the air did not really come to him from outside; he made it, it was his
reaction, but it was a quick, free reaction, of which he could observe little
introspectively.
Perhaps the best-studied case of invention is that of the learner in
typewriting, who, after laboriously perfecting his "letter habits" or
responses to single letters by appropriate finger movements on the
keyboard, may suddenly find himself writing in a new way, the word no
longer being spelled out, but being written as a unit by a coördinated series
of finger movements. The amazing thing is that, without trying for anything
of the kind, he has been able to break away from his habit of spelling out
the word, and shift suddenly to a new manner of writing. He testifies that he
did not plan out this change, but was surprised to find himself writing in the
new way. He was feeling well that day, hopeful and ambitious, he was
striving for greater speed, and, while he was completely absorbed in his
writing, this new mode of reaction originated.
We see in this experimentally studied case some of the conditions that favor
invention. Good physical condition, freshness, mastery of the subject,
striving for some result, and "hopefulness". Now, what is that last?
Confidence, enterprise, willingness to "take a chance", eagerness for action
and readiness to break away from routine? Some of this independent,
manipulating spirit was probably there.
A soldier, so wounded as to paralyze his legs but capable of recovery by
training, had advanced far enough to hobble about with a cane and by
holding to the walls. One morning, feeling pretty chipper, he took a chance
and left the wall, cutting straight across the room; and getting through
without a fall, was naturally much encouraged and {519} maintained this
advance. This might be called invention; it was breaking away from what
had become routine, and that is the essential fact about the inventive
reaction. This playful spirit of cutting loose, manipulating, and rearranging
things to suit yourself is certainly a condition favorable to invention. It does
not guarantee a valuable invention, but it at least helps towards whatever
invention the individual's other qualifications make possible.

CHAPTER XIX

472

Another condition favorable to invention is youth. Seldom does a very old
person get outside the limits of his previous habits. Few great inventions,
artistic or practical, have emanated from really old persons, and
comparatively few even from the middle-aged. On the other hand, boys and
girls under eighteen seldom produce anything of great value, not having as
yet acquired the necessary mastery of the materials with which they have to
deal. The period from twenty years up to forty seems to be the most
favorable for inventiveness.
Imagination Considered in General
Finally, we must return to the question of definition or general description
that was left open near the beginning of the chapter. There seem to be two
steps in the inventive response, one preliminary, the other strictly inventive.
The preliminary step brings the stimuli to bear, and invention is the
response that follows.
Typically, the preliminary stage consists in recall; and association by
similarity, bringing together materials from different past experiences, is
very important as a preliminary to invention. Facts recalled from different
contexts are thus brought together, and invention consists in a response to
such novel combinations of facts. The two steps in invention are, first,
getting a combination of stimuli, and second, responding to the
combination.
{520}
Sometimes it has been said that imagination consists in putting together
material from different sources, but this leaves the matter in mid-air; recall
can bring together facts from different sources and so afford the stimulus
for an imaginative response, but the response goes beyond the mere
togetherness of the stimuli. Thinking of a man and also of a horse is not
inventing a centaur; there is a big jump from the juxtaposition of the data
to the specific arrangement that imagination gives them. The man plus the
horse may give no response at all, or may give many other responses
besides that of a centaur; for example, a picture of the man and the horse

CHAPTER XIX

473

politely bowing to each other. The particular manipulation, or imaginative
response, that is made varies widely; sometimes it consists in taking things
apart rather than putting them together, as when you imagine how a house
would look with the evergreen tree beside it cut down; always it consists in
putting the data into new relationships.
Imagination thus presents a close parallel to reasoning, where, also, there
are two stages, the preliminary consisting in getting the premises together
and the final consisting in perceiving the conclusion. The final response in
imagination is in general like that in reasoning; both are perceptive
reactions; but imagination is freer and more variable. Reasoning is
governed by a very precise aim, to see the actual meaning of the combined
premises; that is, it is exploratory; while imagination, though it is usually
more or less steered either by a definite aim or by some bias in the
direction of agreeable results, has after all much more latitude. It is
seeking, not a relationship that is there, but one that can be put there.
{521}
EXERCISES
1. Outline the chapter.
2. Make a list of hobbies and amusements that you specially enjoy, and try
to discover the sources of satisfaction in each.
3. Recall two stories that you specially enjoyed, and try to discover the
sources of satisfaction in each.
4. How far does the account of daydreams given in the text square with
your own daydreams, and how far does it seem inadequate?
5. An experiment on the speed of revery or of daydreaming. Beginning at a
recorded time, by your watch, let your mind wander freely for a few
moments, stopping as soon as your stream of thoughts runs dry. Note the
time at the close. Now review your daydream (or revery), and tally off the

CHAPTER XIX

474

several scenes or happenings that you thought of, so as to count up and see
how many distinct thoughts passed through your mind. How many seconds,
on the average, were occupied by each successive item?
6. Why do dreams seem real at the time?
7. Analysis of a dream. Take some dream that you recall well, and let your
thoughts play about it, and about the separate items of it--about each
object, person, speech, and happening in the dream--with the object of
seeing whether they remind you of anything personally significant. Push the
analysis back to your childhood, by asking whether anything about the
dream symbolizes your childish experiences or wishes. To be sure, the
psychoanalyst would object that the individual cannot be trusted to make a
complete analysis of his own dream--just as the psychologist would object
to your accepting the recalled experiences and wishes as necessarily
standing in any causal relation to your dream--but, at any rate, the exercise
is interesting.
8. Problems in invention. Solve some of these, and compare the mental
process with that of reasoning.
(a) Devise a game to be played by children and adults together, to
everybody's satisfaction.
(b) Imagine a weird animal, after the analogy of the centaur.
(c) Imagine an interesting incident, bringing in an old man, a little girl, and
a waterfall.
(d) Design the street plan for an ideal small town, built on both sides of a
small river.
9. Show how empathy might make us prefer a symmetrical building to one
that is lop-sided.
{522}

CHAPTER XIX

475

REFERENCES
On the imagination and play of children, see Norsworthy and Whitley's
Psychology of Childhood, 1918, Chapters IX and XII.
For Freud's views regarding dreams, see his Interpretation of Dreams,
translated by Brill, 1913.
For a view which, though psychoanalytical, diverges somewhat from that of
Freud, see Maurice Nicoll, Dream Psychology, 1917; also C. W. Kimmins,
Children's Dreams, 1920.
For studies of play, see Edward S. Robinson, "The Compensatory Function
of Make-Believe Play", in the Psychological Review for 1920, Vol. 27, pp.
429-439; also M. J. Reaney, The Psychology of the Organized Group
Game, 1916.
On invention, see Josiah Royce, "The Psychology of Invention", in the
Psychological Review for 1898, Vol. 5, pp. 113-144; also F. W. Taussig's
Inventors and Money-Makers, 1915.
{523}

CHAPTER XX

476

CHAPTER XX
WILL
PLANNED ACTION, ACTION IN SPITE OF INTERNAL CONFLICT, AND
ACTION AGAINST EXTERNAL OBSTRUCTION
If the psychologist were required to begin his chapter on the will with a
clean-cut definition, he would be puzzled what to say. He might refer to the
old division of the mind into the "three great faculties" of intellect, feeling,
and will, but would be in duty bound to add at once that this "tripartite
division" is now regarded as rather useless, if not misleading. It is
misleading if it leads us to associate will exclusively with motor action, for
we also have voluntary attention and voluntary control in reasoning and
inventing, and we have involuntary motor reactions. "Will" seems not to be
any special kind of response, but rather to refer to certain relationships in
which a response may stand to other responses--but this is certainly too
vague a definition to be of use.
"Will" is not precisely a psychological term, anyway, but is a term of
common speech which need not refer to any psychological unit. In common
speech it has various and conflicting meanings. "Since you urge me", one
may say, "I will do this, though much against my will." Let the dictionary
define such words. What psychology should do with them is simply to take
them as a mining prospector takes an outcropping of ore: as an indication
that it may pay to dig in the neighborhood.
{524}
Voluntary and Involuntary Action
About the first thing we strike when we start digging is the distinction
between voluntary and involuntary. A man has committed homicide, and
the question in court is whether he did it "with malice aforethought", i.e.,
with full will and intention, whether he did it in a sudden fit of anger, i.e.,
impulsively rather than quite voluntarily, or whether it was an accident and

CHAPTER XX

477

so wholly unintentional or involuntary. The court wishes to know, since a
man who has committed one sort of homicide is a very different character
from one who has committed another sort; different acts can be expected
from him in the future and different precautions need to be taken
accordingly.
It is a fact, then, that an act may be performed either with or without
foreknowledge--a remarkable fact both ways! An intentional act is
remarkable from the side of physics or chemistry or botany--which is to say
that it is very exceptional in nature at large. On the other hand, a
completely involuntary act is rather exceptional in human behavior and
perhaps in animal behavior as well, for almost always there is some
striving towards an end, some impulse. The simplest reflexes, to be sure,
are completely involuntary. The pupillary reaction to light is not done with
malice aforethought, cannot be so done. The lid reflex, or wink of the eye,
occurs many times in the course of an hour, without foreknowledge, or
after-knowledge for that matter, though the same movement can be made
voluntarily. Sneezing and coughing are not voluntary in the full sense, but
they are distinctly impulsive, they strive towards desired relief. To sneeze
voluntarily is to sneeze when you don't want to, and to sneeze involuntarily
is to sneeze when you want to--which seems queer, since we usually think of
a voluntary act as one done to further our wishes. The solution of this
puzzle is, {525} of course, that a voluntary sneeze is desired not because of
a direct impulse but to gain some ulterior end, such as to prove we can do
it, or for histrionic purposes--in short, for some purpose beyond the
immediate satisfaction of an impulse.
Thus we may classify acts as wholly involuntary or mechanical, as
impulsive, and as distinctly voluntary or purposive. Or, we may arrange
acts in a scale from those that have no conscious end, through those aimed
directly at an immediate end, up to those done to accomplish an ulterior
end which is imagined beforehand. The last class of fully voluntary acts
belongs under the general head of manipulation, just as imagination does.
We imagine some change to be produced in the existing situation and then
proceed to put our imagination into effect; and this is a typical voluntary
act.

CHAPTER XX

478

We seldom, however, picture a complete act in imagination before
executing it. Even so simple an act as closing the fist cannot be completely
pictured beforehand; for if you try to imagine how the closed fist is going to
feel and then close it, you will find that you left out of your image many
details of the actual kinesthetic sensations. What we imagine and intend is
some change in the situation, and we then proceed to execute that change
and other changes incidentally.
Besides the simple reflexes, there is another sort of involuntary and
mechanical action. Through practice and repetition, an act may become so
habitual as to be done automatically, that is, without being imagined
beforehand, and even without conscious impulse. The practised typist
responds in this way to the words he is copying. We should notice,
however, that this does not mean that the total behavior and state of mind
of the typist is mechanical and devoid of impulse. The typist may write the
letters {526} mechanically, and if expert may write even words in this way,
but all the time he is consciously aiming to copy the passage. His attention
and impulse have deserted the fully mastered details and attach themselves
to the larger units. In the same way, in signing your name you have no
conscious intention or impulse to write each successive letter; but you fully
intend to sign your name.
Development of Voluntary Control
The child's actions are at first impulsive but not voluntary in the full sense,
since obviously he cannot imagine and intend an act till he has had
experience of that act, and he must usually have experienced doing the act
himself before he can effectively imagine it. At least, this is true of the
simpler movements; compound movements, made up of familiar elements,
may be first observed in other persons and then voluntarily imitated. The
child's process of acquiring voluntary control over a movement is
illustrated by the story of how the baby learned to put his hand in his
mouth. He first made this movement in the course of "aimless" throwing of
his arms about, liked the sensation of the hand in the mouth, tried
apparently to get it there again, and in the course of a few days was able to
put it there at will. The child's "aimless" movements at the start were

CHAPTER XX

479

probably impulsive, but they were not directed towards any preconceived
end. Then, having observed a desirable result of one movement, he worked
towards that result by trial and error, till finally he had the necessary
movement so closely linked to the thought of the result as to follow directly
upon the thought.
Once brought under voluntary control, a movement becomes with further
repetition habitual and mechanical, and no longer voluntary or even
impulsive. Thus the voluntary {527} performance of an act intervenes
between the native or instinctive doing of it and the later habitual doing of
it. Blowing out a match affords another example of this course of events. A
child can of course blow out, instinctively, when he has the natural stimulus
for strong expiration, but he cannot at will blow at the lighted match. Being
prompted and shown, he comes by degrees to be able to blow out the
match; during the learning stage he has to try, and the act is voluntary; but
with further practice it becomes involuntary, though it may still be executed
as part of a larger voluntary act, such as preventing a burning match from
setting fire to something on which it has fallen.
A complex act, or series of movements, may be voluntary as a whole, being
directed towards some preconceived result, while the single movements
that constitute the series are mechanical, their particular results no longer
being thought of separately. This is well illustrated by the instances of
typewriting, speaking, and signing the name, mentioned a moment ago.
With practice, the interest in a performance goes more and more to the
final result and deserts the elements of the act.
It is during the organization of reactions that they require attention and
must be thought of before being executed. Organization goes on and on, a
thoroughly organized reaction being later combined with others into a still
bigger act. New demands constantly made upon the individual prevent him,
however well organized, from ever reaching the condition of a wholly
automatic machine. Will, in the sense of action aimed at the
accomplishment of foreseen results, stays with him to the end.
Ideomotor Action

CHAPTER XX

480

Involuntary movement is not always "sensorimotor", which means directly
aroused by a sensory stimulus; oftener {528} it is "ideomotor", or directly
aroused by an idea or thought. It may be so aroused and still be
involuntary. We think of a certain result and our muscles produce this
result, though we did not really mean to do this act ourselves. The thought
arouses the movement because it has previously been linked with the
movement. A thought which has previously served as the stimulus to an act
will tend to have this effect again, unless inhibited by some contrary
stimulus. There is no need of a definite consent to the act, provided there is
nothing present to inhibit it.
Good examples of ideomotor action can be observed among the audience at
an athletic contest. You are watching one of your team do the pole vault,
for instance, and are so much absorbed in his performance and so desirous
for him to succeed that you identify yourself with him to a degree. He is
rising to clear the high bar, and the thought of his clearing it, monopolizing
your mind and leaving no room for the inhibitory thought that the
performer is down there in the field and you up here in the stand, causes
you to make an incipient leg movement as if you yourself were vaulting.
Voluntary action, in the fullest sense, occurs when you realize the situation
and are definitely conscious of yourself, that is to say, when you
differentiate yourself clearly out of the total situation, and not only imagine
some change to be made, but think of that change as to be produced by
you, without at the same time having any contrary thought to inhibit actual
execution.
Conflict and Decision
It appears that in our "digging" we have now struck another vein, for here
we have the fact of one tendency running contrary to another and inhibiting
it. Conflict of desires and the consequent necessity of choosing between
{529} them, is thus brought vividly to our attention. Every one would at
once agree that "will" and "choice" belong closely together. The most
distinctly voluntary acts occur when two alternatives are thought of, and
one of them is chosen.

CHAPTER XX

481

Organized as we are by nature, that is to say, on a large scale, but
incompletely--environed as we are, with multitudinous stimuli constantly
playing on us and arousing contrary tendencies--we cannot hope to escape
conflict of motives and the necessity of making decisions. Every decision
made, every conflict resolved, is a step in the further organization of the
individual. It may be a step in a good direction, or in a bad direction, but it
is a step in organizing the individual's reaction-tendencies into what we
call his character--the more or less organized sum total of his native and
acquired tendencies to reaction, with emphasis on those reactions that
affect his life and social relations in a broad way.
The lowest animals, having few reaction tendencies, and being responsive
to only a narrow environment, show little sign of internal conflict, and
when it does occur it is resolved very simply by the advantage going to one
of the opposing tendencies, with perhaps a shift later to the other, in the
way described in our earlier consideration of attention. [Footnote: See p.
251.] This type of decision is fundamental. In the behavior of higher
animals, we sometimes detect signs of a longer-persisting conflict, as
between curiosity and fear, when a wild creature seems poised between his
inclination to approach and examine a strange object and his inclination to
run away, veering now towards the one and now towards the other
alternative, and unable, as it seems, to reach a decision.
Conflict between the enterprising tendency to explore, manipulate or
somehow launch forth into the new, and the negative tendencies of fear,
inertia, shyness, etc., is {530} something that recurs again and again in
human experience, as illustrated by making up your mind to get up in the
morning, or to plunge into the cold water, or to speak up and have your say
in a general conversation. There is a hesitancyin such cases, due to a
positive and a negative tendency. The conflict may be resolved in favor of
the negative tendency by simple prolongation of the hesitation till the
occasion for action has passed, or it may be resolved in favor of the
positive tendency when this is strong enough for an instant to enable the
individual to commit himself to the enterprise, after which he usually stays
committed. The positive motive must for an instant be stronger than the
negative, in order to get action.

CHAPTER XX

482

A somewhat different type of conflict, which may be called vacillation,
occurs when two positive tendencies are aroused that are inconsistent with
each other, so that gratification of the one entails renunciation of the other.
Old Buridan's celebrated problem of the ass, placed equally distant from
two equally attractive bundles of hay, and whether he would starve to death
from the exact balance of the two opposing tendencies, is a sort of parable
to fit this case. Probably the poor ass did not starve--unless he richly
deserved his name--but he may conceivably have ended the very
uncomfortable state of vacillation by running away altogether, as a human
being, who is really more subject to vacillation than any other creature, is
sometimes so much disturbed at having to decide between two invitations
for the same day as to decline both, and go fishing. Vacillation is certainly
a very unpleasant state of mind. We want action, or else we want peace, but
vacillation gives us neither. In spite of its irksomeness, we seem sometimes
almost powerless to end it, because as soon as we have about decided on
the one alternative, what we shall miss by not choosing the other comes
vividly to mind, and swings the pendulum its way.
{531}
However it comes about that a decision is reached, it usually is reached,
and the curious fact then is that it usually sticks. A student may vacillate
long between the apparently equal attractions of two colleges, but when he
finally decides on one, the advantages of the other lose their hold on him.
Now he is all for one and not at all for the other. Having identified himself
with one college, he has completely altered the balance of attractions, his
self-assertion now going wholly on the side of the chosen college, and even
leading him to pick flaws in the other as if to reinforce his decision. In
other words, he "rationalizes", justifies, and fortifies his decision, once he
has reached it. Some people, indeed, are abnormally subject to vacillation
and seem never to accept their own decisions as final, but normally there
are strong influences tending to maintain a decision, once it is made: the
unpleasantness of the state of vacillation and relief at having escaped from
it; the satisfaction of having a definite course of action; and self-assertion,
because we have decided, and now this course of action is ours. During
vacillation, neither of the alternatives was identified with ourselves, but

CHAPTER XX

483

now we have decided and are not going to be so weak as to change. X is
our college now and anything you say against it you say against us. Thus
the person who has decided defends himself energetically against
reopening the question.
The state of indecision and the state of decision seem thus fairly well
understood, but the process of passing from the one to the other is often
obscure. It differs from one case to another. In one case we find the
rational process of deliberation, in which each alternative is weighed and
the decision awarded to the one that promises best. This is essentially a
work of imagination: you imagine that you have adopted the one
alternative, and see how it suits you, then you do the same with the other
alternative. You think each {532} alternative through to see how
satisfactory it will be, balance one against the other, and choose
accordingly. This is ideal, but often impracticable, since we have not the
time for full deliberation, or since we cannot trust imagination to give us a
correct picture, or since we have no common measure by aid of which to
balance off different sorts of satisfaction. Even when practicable, the
deliberate way of reaching a decision is likely to seem irksome, because of
the delay involved and the natural propensity for impulsive action. Perhaps
the most common process is a sort of partial deliberation, the two
alternatives appealing to us by turns till at some moment one makes a
strong enough appeal to secure action.
Sometimes there is a deadlock, and then we either give up deciding for the
moment, and, sleeping over the matter, find when we next take it up that
one alternative has lost its momentary attractiveness and the other has the
field; or else, feeling the irksomeness and humiliation, almost, of being
unable to make up our mind, we say, "Any decision is better than none;
here goes, then; this is what I will do", so breaking the deadlock by what
seems like an arbitrary toss-up.
At other times, without such a distinct "act of will", and without any
observable change in the attractiveness of either alternative, we simply
find, after awhile, that a decision has emerged, and that we now know what
we are going to do. What has happened in us to bring about the decision

CHAPTER XX

484

we cannot see, but here we are with a decision made and perhaps with the
act already performed. The two alternatives remain theoretically equal, but
one has somehow got hold of us, while the other has lapsed.
Then there is the case where we "see the better, but follow the worse", or
are in great danger of so doing. The "worse" is usually something that
appeals to the {533} "old Adam" in us, something that strongly arouses a
primitive instinctive response; while the "better" is a nobler, more dutiful,
or more prudent course. The lower motive being the stronger, how can it
ever be that the higher motive gets the decision? Well, the fight is not just a
contest between these two. Other motives are drawn into the fray, the whole
man is drawn in, and it is a question which side is the stronger. Fear of
ridicule or criticism, sense of duty, self-respect, ambition, ideals of oneself,
concern for the welfare of another person, loyalty to a social group, may be
ranged on the side of the "weaker" motive and give it the advantage over
the stronger.
What becomes of the rejected motives? If unimportant and s superficial,
they simply lapse into an inactive state and are gradually forgotten,
perhaps recurring to mind once in a while with a faint tinge of regret, since
after all we should have liked to gratify them. "As a boy, I wanted to be a
sailor; well, I would rather like to try it for once." When a motive is deeply
rooted in our nature, it cannot be so easily eliminated. Sometimes it is
simply deferred and remains dormant, content to bide its time; "there will
be time enough for that later on". Sometimes it is disguised and then
gratified, as when an apparently courteous deed contains an element of
spite. Sometimes it is afforded a substitute gratification, as when the
boastful boy, after having his "conceit taken out of him" by his mates,
boasts of his school, profession, town or country. This is often called
"sublimation". Sometimes, though denied, it remains insistent, and "defense
mechanisms" have to be devised to keep it down; the "sour grapes"
mechanism is an example, which may be used not only when the "grapes"
are physically out of reach but also when for any reason we decide to leave
them alone.

CHAPTER XX

485

The psychoanalytic school lays great stress on {534} "suppressed" desires,
holding that they become unconscious while still remaining active, and that
they find gratification symbolically in dreams, and at times break into
waking life in a disturbing way.
The most adequate way of handling rejected motives is to coördinatethem
with other, accepted motives--to harness them into teams and put them to
work. This cannot always be done; for example, if a young woman has two
attractive suitors, she might find difficulty in harnessing them together, and
will have to say good-by to one, at least. But when the boastful boy
becomes a loyal and enthusiastic member of a school, his self-assertive
motive is harnessed up with social motives into a very effective team.
Probably a tendency can only be "sublimated" by being thus combined and
coördinated with other strong tendencies.
These various ways of handling a rejected motive could be nicely
illustrated from the case of the sex instinct. It so happens, partly because
modern economic and educational conditions enforce a delay in
marriage--and in part simply because there are so many attractive people
in the world--that the cravings of sex must often be denied. What becomes
of them? Of course the sex instinct is too deep-seated to be eradicated or
permanently to lapse into a dormant state. But the fascination for
particular individuals may so lapse or be forgotten. Certain people we
remember, once in a while, with half-humorous and certainly not very
poignant regret. Deferring the whole matter till the time is ripe works well
with many a youth or maiden. Combined with social interests, the sex
motive finds sublimated satisfaction in a great variety of amusements, as
well as in business associations between the sexes. Introduce a nice young
lady into an officeful of men, and the atmosphere changes, often for the
better,--which means, certainly, that the sex motive of these men, combined
with ordinary business {535} motives, is finding a sublimated satisfaction.
The sex motive thus enters into a great variety of human affairs. "Defense
mechanisms" are common in combating unacceptable erotic impulses; the
sour grapes mechanism sometimes takes the extreme form of a hatred of the
other sex; but a very good and useful device of this general sort is to throw
oneself into some quite different type of activity, as the young man may

CHAPTER XX

486

successfully work off his steam in athletics. This is not sublimation, in any
proper use of that term, for athletic sport does not gratify the sex tendency
in the least, but it gratifies other tendencies and so gratifies the individual.
It is the individual that must be satisfied, rather than any specified one of
his tendencies. As regards coördination, the fact was illustrated just above
that this method would not always work; but sometimes it works immensely
well. Here is a young person (either sex), in the twenties, with insistent sex
impulses, tempted to yield to the fascination of some mediocre
representative of the other sex. Such a low-level attachment, however,
militates against self-respect, work, ambition, social sense. Where is the
"coördination"? It has to be found; some worthy mate will harness all these
tendencies, stimulating and gratifying sex attraction, self-respect, ambition,
and others besides, and coördinating them all into the complex and
decidedly high-grade sentiment of love.
Obstruction and Effort
The term "will" is used to designate the response to external obstruction as
well as the response to internal conflict. In fact, nothing is so
characteristically "will" as the overcoming of resistance that checks
progress towards a desired result. As "decision" is the response to internal
conflict of tendencies, so "effort" is the response to external {536}
resistance encountered in executing a desire that has been adopted. The
obstruction may be purely physical, as the underbrush that impedes your
progress through the woods; or it may be another person's will running
counter to yours; or it may be of the nature of distraction of attention from
the end in view.
The resistance may also be internal, and consist in your own lack of skill in
executing your intentions, or in the disturbing effect of some desire which,
though rejected, has not gone to sleep but still pulls you another way than
the way you have decided to go.
In all these cases, the individual is moving towards a certain goal, but
encounters obstruction; and his response is effort, or increased energy put
into his movement towards the goal. So long as the tendency towards a

CHAPTER XX

487

goal finds smooth going, there is not the same determination that appears
as soon as an obstruction is encountered. The "will", in common usage, will
not brook resistance--the "indomitable will".
Now effort and determination, in our chapter on the native impulses, were
put under the head of the assertive or masterful tendency; and it does seem
that "will", in this sense, is almost the same thing as the instinct of
self-assertion. Certainly, in the case of adults, an obstruction puts the
individual "on his mettle", and superimposes the mastery motive upon
whatever motive it may have been that originally prompted the action.
The mastery motive came clearly to light in an experiment designed to
investigate "will action". The subject of the experiment was first given a
long course of training in responding to certain stimulus words by other
certain words that were constantly paired with them; and when his habits
of response were thus well fixed, his task was changed so that now he must
respond to any word or syllable by any {537} other that rhymed with it. A
series of stimuli now began with words for which no specific response habit
had been formed, and to these the subject reacted with no great difficulty.
But then, unexpectedly, he got a stimulus word to which he had a fixed
habit of response, and before he could catch himself he had made the
habitual response, and so failed to give a rhyme as he had intended. This
check sometimes made him really angry, and at least it brought him up to
attention with a feeling which he expressed in the words, "I can and will do
this thing". He was thus put on his guard, gave closer attention to what he
was doing, and was usually able to overcome the counter tendency of habit
and do what he meant to do. Some subjects, who adapted themselves
readily and fully to the rhyming task, i.e., who got up a good "mental set"
for this sort of reaction, made few errors and did not experience this feeling
of effort and determination; for them the effort was unnecessary; but the
average person needed the extra energy in order to overcome the
resistances and accomplish his intentions.
Other good instances of effort are found in the overcoming of distraction,
described under the head of attention, [Footnote: See p. 259.] and in the
work of the beginner at any job. When the beginner has passed the first

CHAPTER XX

488

cautious, exploratory stage of learning, he begins to "put on steam". He
pounds the typewriter, if that is what he is learning, spells the words aloud,
and in other ways betrays the great effort he is making.
Ask a child just learning to write why he grasps the pencil so tightly, why
he bends so closely over the desk, why he purses his lips, knits his brow,
and twists his foot around the leg of his chair, and he might answer, very
truly, that it is because he cannot do this job easily and has to try hard. All
these unnecessary muscular movements and tensions {538} show the access
of energy that has been liberated in his brain by the obstruction
encountered.
Any learner, once he has mastered the difficulties of the task, reaches an
easy-running stage in which effort is no longer required, unless for making
a record or in some way surpassing himself. With reference to effort, then,
we may speak of three stages of practice: the initial, exploratory stage, the
awkward and effortful stage, and the skilled and free-running stage. These
are identical with the three stages in the development of attention to a
subject, which were described [Footnote: See p.258] as the stage of
spontaneous attention or curiosity; the stage of forced attention, or effortful
attention, controlled by such motives as fear or self-assertion; and the final
stage of objective interest and absorption in the subject, which is evidently
the same as the free-running condition.
Effort is not a good in itself; it is an unpleasant condition; but it is a
natural response to difficulty and is often necessary in order to get the
individual into the free-running condition which is both efficient and
pleasant. It is often required to get the individual out of the easy-going
condition into the free-running condition, which is something entirely
different. In free-running action there may be even more energy expended
than in effortful action, but it is better directed and produces no strains and
jolts.
Intelligence, in the sense of adaptability and "seeing the point", may often
take the place of effort. Consider the way two different people react to a
sticking door: the one puts in more strength and forces it, the other by a

CHAPTER XX

489

deft thrust to the side opens it without much extra force. You can't say
absolutely which mode of attack is better, for your stubborn one may waste
his strength on an obstruction that really cannot be forced, while your
clever one may waste his {539} time on a door that needs only a bit of a
push. Persistence plus adaptability is what efficient activity demands.
Thought and Action
"Men of thought" and "men of action" are sometimes contrasted--which is
hardly fair to either, since the great man of action must have the
imagination to conceive a plan, and must know exactly what he is aiming to
accomplish, while the great thinker must be persistent in thinking and must
get into action by way of writing or somehow making his thoughts count in
the world. But we do find men who are impatient of thought and want to get
into action at once, even without knowing just what they are about, and
other men who seem quite contented to think and plan, without any definite
intention of ever putting their plans into execution. The former type, the
impulsive individual, is not difficult to understand, his behavior fits in so
well with the primitive trial-and-error sort of activity; but the mere thinker
seems an anomaly, in view of the general psychological principle that
thought tends toward motor action.
In accounting for the inactive thinker, we have to remember, first, that
some inhibition of immediate action is often necessary, in order to have
time to think the matter over; this prudent attitude becomes a habit with
some individuals. Besides, there are the negative motives of fear, shyness
and laziness that tend to deter from the actual execution of a plan. Hamlet's
"conscience" that makes "cowards of us all", so that "the native hue of
resolution is sicklied o'er with the pale cast of thought, and enterprises of
great pith and moment . . . lose the name of action" turns out, if we look a
few lines further back, to be the "dread of something" unknown, that
"puzzles the will, and makes us rather bear those ills we have than fly to
others that we know not of". {540} Fear--fear of unforeseen consequences,
fear of committing ourselves, fear of ridicule--is one great inhibiter of
action, and inertia is another, since it is much less strenuous to sit in the
armchair and plan than to get out and put the plan into effect. Besides this,

CHAPTER XX

490

some people who are good at planning come to take so much pride and
satisfaction in the thinking part of an enterprise that they do not feel the
need for action. Moreover, you can "plan" in a large way, without
bothering about details, but once you start to execute your plan you
encounter details and preliminaries which are apt to rob the enterprise of
its zest. Here is where persistence and effort are needed.
Abulia--"no will"--is an abnormal degree of lack of zest for action. Along
with it go timidity and lack of social force, proneness to rumination and
daydreaming, and often a feeling of being compelled to perform useless
acts, such as doing everything three times or continual washing of the
hands. Abulia is not just a comfortable laziness, but is attended by a sense
of humiliation and inferiority. It shows itself in excessive hesitation and
vacillation and in failure to accomplish anything of consequence.
Sometimes the subject expends much effort, but fails to direct the effort
towards the execution of his purposes. Some authorities have ascribed
abulia to inertia or "low mental tension", some to an overdose of fear and
caution, some to the paralyzing effect of suppressed desires still living in
the "unconscious". Mild degrees of it, such as are not uncommon, seem
sometimes to be due to the hiatus that is bound to exist between the end one
has in view and the means one must take to start towards that end. One has
zest for reaching the goal, but not for the preliminaries.
An author, whose case was studied because he was accomplishing so little,
was found to follow a daily program about as follows. He would get up in
the morning full of {541} confidence that this was going to be a good day,
with much progress made in his book. Before starting to write, however, he
must first have his breakfast, and then a little fresh air, just to prepare
himself for energetic work. On returning from his walk, he thought it best to
rest for a few moments, and then one or two other little matters seemed to
demand attention; by the time these were done, the morning was so far
gone that there was no time for a really good effort, so he optimistically
postponed the writing till the afternoon, when the same sort of thing
happened, and the great performance had to be put over till the next day.
This man did better under a regime prescribed by his medical adviser, who
commanded him to write for two hours immediately after rising, and make

CHAPTER XX

491

this his day's work--no more and no less than two hours. The definiteness of
this task prevented dawdling.
Other writers have noted a curious tendency to "fight shy" of the passage
actually being written and let the thoughts move ahead and plan out the
later passages. Sometimes it is necessary to trick yourself if you are to get
anything done; you say, "I can't write this properly just now; I'll just sketch
out a preliminary draft"--on which understanding you may be able to write,
whereas you could not if you thought you were writing "for keeps"; but
when you have got well started and warmed to the task, you may find your
work good enough to keep, after all. Judging by these mild cases, abulia
may be due partly to distaste for the details of actual performance, and
partly to a dread of committing oneself to anything that has the stamp of
finality.
Securing Action
No chapter in psychology offers more in the way of practical applications
than this chapter on the will--if we only {542} knew more on the subject!
How to get action, either from yourself, or from others if you are
responsible for their action, is a big practical problem. A few hints on the
matter are suggested by what precedes.
How to get action from yourself--how to liberate your latent energies and
accomplish what you are capable of accomplishing. A definite purpose is
the first requirement; without that one merely drifts, with no persistency
and no great energy. The goal should be something that appeals vitally to
you, and something which you can attain; not too distant a goal; or, if the
ultimate goal is distant, there must be mileposts along the way which you
can take as more immediate goals; for a goal that can be reached by
immediate action enlists more present effort. The student puts more energy
into his study when the examination is close at hand; and, although this is
regrettable, it reveals a fact in human nature that can be utilized in the
management of yourself or others. A well defined and clearly visible goal is
a much better energy-releaser than vague "good intentions".

CHAPTER XX

492

The more clearly you can see and measure your approach towards the
goal, the more action; thus it has been found in many different lines that the
"practice curve method" of training gives quicker and better results than
ordinary drill. In the practice curve [Footnote: See p. 321.] you have a
picture of your progress; you are encouraged by seeing how far you have
advanced, and stimulated to surpass your past record, and thus your
immediate goal is made very definite. You cannot do so well when you
simply "do your best" as when you set out to reach a certain level, high
enough to tax your powers without being quite out of reach. You cannot
jump so high in the empty air as you can to clear a bar; and, to secure your
very best endeavor, the bar must not be so low {543} that you can clear it
easily, nor so high that you cannot clear it at all.
The goal should be heartily adopted as your goal, which is to say that the
self-assertive motive should be harnessed into service. The importance of
this motive in securing action is seen in the strong effect of competition to
arouse great activity. The runner cannot make as good speed when running
"against time" as when competing directly, neck to neck, with other
runners. Hence, to get full action from yourself, find worthy competitors.
And for the same reason, accept responsibility. This puts you on your
mettle. To shun competition and responsibility is characteristic of abulia.
Other strong motives, such as the economic motive or the sex motive (seen
in the energetic work of a young man whose goal is marriage to a certain
young woman) can also be enlisted in many cases. But, for the best results,
there should be, in addition to these extraneous motives, a genuine interest
in the work itself.
Do not say, "I will try". Say, "I will do it". The time for trying, or effort, is
when obstruction is actually encountered. You cannot really try then,
unless you are already fully determined to reach the goal.
Getting action from other people is the business of parents, teachers,
bosses, officers, and to some extent of every one who wishes to influence
another. In war, the problem of "morale" is as important as the problem of
equipment, and it was so recognized by all the armies engaged in the Great
War. Each side sought to keep the morale of its own soldiers at a high

CHAPTER XX

493

level, and to depress the morale of the enemy. Good morale means more
than willingness for duty; it means "pep", or positive zest for action. Some
of the means used to promote morale were the following. The soldier must
believe in the justness of his cause; that is, he must make victory his own
goal, and be {544} whole-hearted in this resolve. He must believe in the
coming success of his side. He must be brought to attach himself firmly to
the social group of which he forms a part. He must be so absorbed in the
activities of this group as to forget, in large measure, his own private
concerns. Not only must he be enthusiastic for cause and country, but he
must be strong for his division, regiment and company. Much depends on
the officers that directly command him. He must have confidence in them,
see that they know their business, and that they are looking out for the
welfare of their men as well as expecting much from them. Competition
between companies, regiments, and arms of the service was a strong force
tending towards rapid progress in training and good service in the field.
Interest in the actual technical work that was being done, and seeing that
one's immediate group was accomplishing something towards the winning
of the war was a powerful spur, while a sense of the uselessness of the work
in hand strongly depressed the morale of a group. "Nothing succeeds like
success"; morale was at its best when the army was advancing and
seemingly nearing the goal. Morale was also wonderfully good when the
enemy was advancing, provided your side was holding well with a good
prospect of bringing the enemy to a halt and baffling his offensive. On the
other hand, nothing was so hard on morale as the failure of an ambitious
offensive of one's own side; the sense of futility and hopelessness then
reached its maximum--except, of course, for the case of obviously
approaching defeat. The conditions of trench warfare imposed a strain on
morale: no progress, in spite of the danger and hardship, no chance to get
at the enemy or do anything positive.
The manager of an industrial enterprise has the same problem of morale to
meet. It is his business to get action from people who come into the
enterprise as servants. The {545} main difficulty with the master-servant
relation is that the servant has so little play for his own self-assertion. The
master sets the goal, and the servant has submissively to accept it. This is
not his enterprise, and therefore he is likely to show little "pep" in his work.

CHAPTER XX

494

He can be driven to a certain extent by fear and economic want; but better
results, and the best social condition generally, can be expected from such
management as enlists the individual's own will. He must be made to feel
that the enterprise is his, after all. He must feel that he is fairly treated, and
that he receives a just share of the proceeds. He must be interested in the
purposes of the concern and in the operations on which he is engaged. Best
of all, perhaps, some responsibility and initiative must be delegated to him.
When the master, not contented with setting the main goal, insists on
bossing every detail, continually interfering in the servant's work, the
servant has the least possible chance of adopting the job as his own. But
where the master is able, in the first place, to show the servant the objective
need and value of the goal, and to leave the initiative in respect to ways
and means to the servant, looking to him for results, the servant often
responds by throwing himself into the enterprise as if it were his own--as,
indeed, it properly is in such a case.
"Initiative"--that high-grade trait that is so much in demand--seems to be
partly a matter of imagination and partly of will. It demands inventiveness
in seeing what can be done, zest for action, and an independent and
masterful spirit.
The physician who treats "nervous" or neurotic cases has this problem of
getting action from his patients. Strange as it may seem, these cases, while
bemoaning their unfortunate condition, cling to it as if it had its
compensations, and do not wholeheartedly will to get well. They have
{546} slumped into the attitude of invalidism, and need reorientation
towards the goal of health and accomplishment. How to bring this about is
the great problem. Much depends here on the personality of the physician,
and different physicians (as well as mental healers outside the medical
profession) employ different technique with more or less of success. The
first necessity is to win the patient's confidence; after that, some use
persuasion, some suggestion, some psychoanalysis, some (non-medical
practitioners) use metaphysical doctrines designed to lead the patient to
"hitch his wagon to a star". On the intellectual side, these methods agree in
giving the patient a new perspective, in which weakness, ill health and
maladaptation are seen to be small, insignificant and unnecessary, and

CHAPTER XX

495

health and achievement desirable and according to the nature of things;
while on the side of impulse they probably come together in appealing to
the masterful and self-assertive tendency, either by putting the subject on
his mettle, or by leading him to partake of the determined, masterful
attitude of the physician, or by making him feel that he is one with the great
forces of the universe. Methods that psychologically are very similar to
these are employed by the clergyman in dealing with morally flabby or
maladjusted individuals; and the courts are beginning to approach the
delinquent from the same angle. All the facts seem to indicate that the way
to get action is to have a goal that "fires the imagination" and enlists the
masterful tendencies of human nature.
The Influence of Suggestion
Can the will of one person be controlled by that of another, through
hypnotism or any similar practice? This question is often asked anxiously
by those who fear that crime or misconduct willed by one person may be
passively executed by another.
{547}
Hypnosis is a sleeplike and passive state that is nevertheless attentive and
concentrated. It appears as if the subject were awake at just one point,
namely at the point of relation with the hypnotizer. To stimuli from other
sources, external or internal, he is inaccessible. His field of activity is
narrowed down to a point, though at that point he may be intensely active.
The depth of the hypnotic state varies from shallow to profound.
Comparatively few individuals can be deeply hypnotized, but many can be
got into a mild receptive state, in which they accept the suggestions of the
hypnotizer more readily than in the fully awaking state. The waking person
is alert, suspicious, assertive, while the hypnotized subject is passive and
submissive. The subject's coöperation is necessary, in general, in order to
bring on the hypnotic state, whether shallow or deep.

CHAPTER XX

496

The means of inducing hypnosis are many and varied, but they all consist
in shoving aside extraneous thoughts and stimuli, and getting the subject
into a quiet, receptive attitude, with attention sharply focussed upon the
operator.
When the subject is in this state, the "suggestions" of the operator are
accepted with less criticism and resistance than in the fully waking state. In
deep hypnosis, gross illusions and even hallucinations can be produced.
The operator hands the subject a bottle of ammonia, with the assurance
that it is the perfume of roses, and the subject smells of it with every
appearance of enjoyment. The operator points to what he says is a statue of
Apollo in the corner, and the subject apparently sees one there.
Loss of sensation can also be suggested and accepted. Being assured that
his hand has lost its sensation and cannot feel a pin prick, the subject
allows his hand to be pricked with no sign of pain. Paralysis of the arm or
leg can be similarly suggested and accepted.
{548}
Acts may be suggested and performed. The subject is handed a cardboard
sword with the assurance that that is a sword, and directed to attack some
person present, which he does with the appearance of serious intent.
Now, however, let the subject be given a real sword with the same
command as before. Result--the subject wakes up! This suggestion was too
much; it aroused dormant tendencies, broadened out the field of activity,
and so produced the waking condition. A suggestion that runs counter to
the subject's organized character and tendencies cannot get by without
arousing them and so awakening the subject. Consequently, there does not
seem to be much real danger of crimes being performed by innocent
persons under hypnosis.
In mild hypnosis, the above striking phenomena are not produced, but
suggestions of curative value may be conveyed, and so taken to heart that
they produce real results. The drowsy state of a child just falling to sleep

CHAPTER XX

497

can be similarly utilized for implanting suggestions of value. One little boy
had a nervous twitching of the face that was very annoying. His father, just
as the child was dropping off to sleep, conveyed the suggestion that the
child didn't like this twitching; and this suggestion, repeated night after
night, in a few days caused the twitching almost wholly to disappear.
Suggestion often succeeds in a waking state. In a certain test for
"suggestibility", the task is set of copying a series of lines. The first line is
short, the second longer, the third longer still, the rest all of the same
length, but the more suggestible individual keeps on making each
succeeding line longer. There are, however, various tests for suggestibility,
and an individual who succumbs to one does not necessarily succumb to
another, so that it may be doubted whether we should baldly speak of one
individual as more suggestible than another.
{549}
Suggestion may be exerted by a person, or by the circumstances. If by a
person, the more "prestige" he enjoys in the estimation of the subject, the
greater his power of suggestion. A prestige person is one to whom you are
submissive. A child is so dependent on older people, and so much
accustomed to "being told", that he is specially susceptible to prestige
suggestion.
Suggestion exerted by the circumstances is about the same as what is often
called "auto-suggestion" or "self-suggestion". A man falls and hurts his
hip, and, finding his leg difficult to move, conceives that it is paralyzed, and
may continue paralyzed for some time.
"Counter-suggestion" applies to cases where a suggestion produces the
result contrary to what is suggested. You suggest to a person that he should
do a certain thing, and immediately he is set against that act, though, left to
himself, he would have performed it. Or, you advance a certain opinion and
at once your hearer takes the other side of the question. Quite often skilful
counter-suggestion can secure action, from children or adults, which could
not be had by positive suggestion or direct command.

CHAPTER XX

498

If suggestion succeeds by arousing the submissive tendency,
counter-suggestion succeeds by arousing the assertive tendency.
Suggestion works when it gets response without awakening the resistance
which might be expected, and counter-suggestion when it arouses so much
resistance that the suggestion itself does not have the influence which might
be expected. In terms of stimulus and response, suggestion works when a
particular stimulus (what is suggested) arouses response without other
stimuli being able to contribute to the response; and counter-suggestion
works when a stimulus (what is suggested, again) is itself prevented from
contributing to the response. In counter-suggestion, response to the
suggestion itself is inhibited, and in positive {550} suggestion response to
other stimuli is inhibited. Both involve narrowness of response, and are
opposed to what we commonly speak of as "good judgment", the taking of
all relevant stimuli into account, and letting the response be aroused by the
combination.
{551}
EXERCISES
1. Outline the chapter.
2. Which of the previous chapters have the closest contacts with the present
chapter?
3. How does the popular conception of hypnotism differ from the scientific?
4. List 8 acts performed during the day, and arrange them in order from the
most involuntary to the most voluntary.
5. Analyze a complex performance so as to show what in it is voluntary and
what involuntary.
6. Mention an instance of practice changing a voluntary performance into
an involuntary, and one of practice changing an involuntary performance
into a voluntary.

CHAPTER XX

499

7. If an individual is influenced by two opposing motives, must he act
according to the stronger of the two?
8. Illustrate, in the case of anger, several ways of dealing with a rejected
motive. i.e., in what different ways can anger be controlled?
9. How would you represent purpose in neural terms? How does it compare
with "mental set"?
REFERENCES
On the importance of self-assertion (and of submission) in will, and on the
relation of conduct to impulse and to reasoning, see McDougall's Social
Psychology, Chapter IX, on "Volition", and Supplementary Chapter I, on
"Theories of Action".
For a practical study of the question, how to secure action, see Walter Dill
Scott's Increasing Human Efficiency in Business, 1911.
On hypnotism, see Albert Moll's Hypnotism, translated by A. F. Hopkirk;
or James's Chapter XXVII in his Principles of Psychology, 1890.
{552}

CHAPTER XXI

500

CHAPTER XXI
PERSONALITY
THE INDIVIDUAL AS A WHOLE, INTEGRATED OR PARTIALLY
DISSOCIATED
People differ not only in intelligence and efficiency, but in an intangible
something referred to as "personality". If your acquaintance is applying for
a certain position, and has named you as one of his references, you will be
asked by the appointing officer to tell what you know of the candidate's
experience, his knowledge and skill in the field where he desires a position,
his character and habits, and his personality; and in replying you state, if
you conscientiously can, that the candidate has a pleasing and forceful
personality, that he gets on well with superiors, equals and inferiors, is
coöperative, energetic, ambitious without being selfish, clean, modest,
brave, self-reliant, cheerful, optimistic, equal-tempered; and you perhaps
include here traits that might also be classed under the head of
"character", as honesty, truthfulness, industry, reliability, and traits that
might be classed under physique, as good appearance and carriage,
commanding presence, a "strong face", and even neatness and good taste
in dress. Here we have an array of traits that are of great importance to the
individual's success in his work, in his social relationships and in his family
life; and it is a proof of how much remains to be accomplished in
psychology that we cannot as yet present anything like a real scientific
analysis of personality, nor show on what elementary factors it depends.
{553}
Factors in Personality
If we do attempt some sort of analysis, we have first to notice that
personality depends in part on physique. In ordinary life, mental and
physical traits are not sharply distinguished, and probably they cannot be
distinguished except in the abstract. The mere size of a person affects his
attitude towards other people and their attitude towards him--and it is in

CHAPTER XXI

501

such social relations that personality most clearly stands out. His size
affects the individual's behavior in subtle ways, since the big fellow
dominates others easily just by virtue of his size, and so tends to be
good-humored, while the little fellow is apt to be strenuous and
self-assertive. Muscular development and "looks" also have their effect on
personality.
Another factor might, by a sort of play on words, be called chemique. This
corresponds to what is often called temperament, a very obscure matter
psychologically. We speak of one as having an excitable temperament, a
jovial or a sour temperament. "Disposition" is another word used in
connection with such traits. The ancients attempted to relate the "four
temperaments" to the four great "humors" or fluids of the body. Thus the
"sanguine" individual was one with a surplus of blood, the "choleric" had a
surplus of bile, the "phlegmatic" a surplus of phlegm, and the
"melancholic" a surplus of black bile or spleen; and any individual's
temperament resulted from the balance of these four. Sometimes a fifth
temperament, the nervous, was admitted, dependent on the "nerve fluid".
This particular chemical derivation of temperament is, of course, out of
date, being based on very imperfect knowledge of physiology; but it still
remains possible that chemical substances carried around in the body
fluids have much to do with the sort of trait that we think of under {554} the
head of temperament. Only that to-day, with some knowledge regarding the
internal secretions of the "endocrine glands", we should be inclined to
connect temperament with them, rather than with blood, bile, etc. Take, for
example, the secretion of the adrenal glands, that we found to be poured
out during fear and anger and to have so much to do with the bodily
condition of readiness for violent action and probably also with the
"stirred-up" emotional state. What is more likely than that individuals differ
in the strength of their adrenal secretion or in the readiness with which the
glands are aroused to pour it out into the circulation? The excitable
individual might be one with over-active adrenals. And in the same way the
strenuous individual might be one with an unusually active thyroid gland,
since there certainly seems to be some connection between this gland and
the tendency to great activity. There are several other glands that possibly

CHAPTER XXI

502

affect behavior in somewhat similar ways, so that it is not improbable,
though still rather hypothetical, that chemical substances, produced in
these glands, and carried by the blood to the brain and muscles, have much
to do with the elusive traits that we class under temperament and
personality.
Once more, consider the instincts in relation to personality. Undoubtedly
these instinctive tendencies differ in strength in different individuals. One is
more gregarious than another, and this is an important element in his
personality. One is more assertive and masterful than another, one is more
"motherly" than another, more responsive by tender and protective
behavior to the presence of children or others who need help. One is more
prone to laugh than another, and the "sense of humor" is admitted to be an
important element in personality. And so on through the list; so that
personality can be partially analyzed in terms of instinct.
{555}
Has intelligence anything to do with personality? It certainly has, in many
ways. One who is slow in learning adapts himself poorly to other persons
and remains out of touch with his social environment. "Tact" depends
partly on instinctive liking for society, no doubt, but partly on the ability to
perceive what others want, and on the imagination to put yourself in their
place. High principles require the ability to reason things out and see them
in perspective. Statistical studies of the rulers of Europe, for a period of
several centuries, show that on the whole those with higher intelligence
were also of better character and personality. Criminals, taken as a whole,
average rather low in intelligence; and it may even be doubted whether the
clever, scheming rascal, who defrauds widows of their money, or trains
feeble-minded boys to pick pockets for him, has, after all, the brains of the
man who can easily see how such schemes could be worked but decides
against them himself because he sees something better worth doing.
A sense of inferiority, either physical or mental, is apt to affect the
personality unfavorably. It does not necessarily produce humble behavior;
far from that, it often leads to a nervous assertiveness. An apparently

CHAPTER XXI

503

disdainful individual is often really shy and unsure of himself. Put a man
where he can see he is equal to his job and at the same time is
accomplishing something worth while, and you often see considerable
improvement in his personality.
The Self
In a broad, objective sense, the self is the individual, but in a more
subjective sense the self is what the individual knows about himself, how he
conceives himself, how he feels about himself, what he plans and wishes for
himself. It is reasonable to suppose that the newly born infant does not
{556} distinguish himself from other objects. Perhaps his foot, as he sees it,
seems simply an object among others, like a toy; but he soon learns to
connect the visual appearance with the cutaneous and kinesthetic
sensations from the foot, and these sensations, along with the organic,
always retain in large measure the subjective quality of belonging to the
self, whereas sights, sounds, odors and tastes seem to belong to objects
distinct from the self.
If we ask how the child comes to make the distinction between the self and
the not-self, we have to call to mind the assertiveness that manifests itself
very early in the child's behavior--how he resists being pushed and pulled
about, struggles against being held, and in many ways, more and more
complex as he develops, shows that he has a "will of his own". It is in
resisting and overcoming external things that he comes to distinguish
himself from them.
Not only external things, but other persons particularly, have to be
encountered and resisted by the child; and often, too, he has to submit to
them, after a struggle. Probably he distinguishes between himself and other
people even more sharply than between himself and inanimate things. Ask
any one to tell you what he knows about himself, and he will begin to tell
you how he differs from others. Thus the individual's conception of himself
is largely a product of his social experience.

CHAPTER XXI

504

The self is first known as wish or will, and probably that always remains
the core of any one's conception of himself. That is to say, I think of myself
first of all as wishing, aiming, purposing, resisting, striving, competing. But
I may come to know myself more objectively. By dint of experience I know
something of my limitations. I know I am not muscular enough to do this,
nor mathematical enough to do that, nor artistic enough to do the other. In
this progressive age, some children even know their own IQ. We {557}
have frequent occasion to measure ourselves against others, or against
tasks, and lay some of the lessons to heart. Though most of us are probably
inclined to overrate ourselves, many will be found to give a pretty exact
estimate of themselves. It is surprising that this should be so, in view of the
tendency to believe what one wishes, and of the deep-seated desire for
superiority or at least against inferiority. It shows that, after all, there is a
good deal of fidelity to fact in our make-up.
The word "self-assertion", which has been used more or less throughout the
book as a name for the native tendency to resist, persist, master, dominate,
display oneself and seek social recognition, can now be seen to be not
entirely a good word for the purpose. It seems to imply that the
self-assertive individual is necessarily conscious of the self. From what has
just been said, it can be seen that this would be putting the cart before the
horse. The self-assertive impulse precedes, consciousness of self follows
and depends on self-assertion. A true estimate of oneself and one's
limitations arises from self-assertion plus experience of failure and the
necessity of giving up and submitting.
Self-assertion is not identical with selfishness. Selfishness aims to get,
self-assertion to do. Selfish behavior is, however, often dictated by
self-assertion, as when a person wishes to get and have, in order to be able
to show by his possessions what a great man he is. But sometimes
self-assertion squelches selfishness, leading a person to renounce present
gain without hope of later gain in compensation, just because he sees in
such renunciation the best chance for mastery and proving himself "the
captain of his soul".

CHAPTER XXI

505

The "expansion of the self" is an interesting and significant phenomenon.
The individual comes to call things, persons, social groups, ideas and
principles by the name {558} "mine". Now what is mine is part of me. My
self-feeling attaches to my dog; I am proud of that dog, brag of his exploits,
am cast down if I see him outclassed; and it is the same way with my house,
my son, my town, my country. We spoke of this sort of thing before, under
the name of "sublimation of the self-assertive impulse", and we said then
that the sublimation was made possible by the combination of this impulse
with some other interest. My dog is not entirely myself; he is a dog, and I
am interested in him as a dog; I am interested in other dogs, and like to
watch their antics. But this particular dog means more than another to me
because he is mine; I have expanded myself to include him. In general, the
self is expanded to take in objects that are interesting in themselves, but
which become doubly interesting by being appropriated and identified in
some measure with oneself.
Integration and Disintegration of the Personality
Though the individual is always in one sense a unit, there is a sense in
which he needs to achieve unity. His various native tendencies and interests
do not always pull together, and in fact some necessarily pull against
others. So that we sometimes say of a person that he is behaving so
differently from usual that we should not know he was the same person. We
may speak of one person as being well integrated, meaning that he is
always himself, his various tendencies being so coördinated as to work
reasonably well together; whereas of another we speak as poorly
integrated, unstable, an uncertain quantity. Integration is achieved partly
by selection from among conflicting impulses, partly by coördination,
partly by judicious treatment of those impulses that are denied; as was
partly explained in the last chapter.
{559}
The self, expanding socially, may expand in more than one direction, with
the result that the individual has in a sense two or more selves, one for his
business, one for his home; and it may happen that the instincts and

CHAPTER XXI

506

interests dominating the individual in these two relations are quite
different, so that a man who is hard and grasping in business is kind and
generous to his wife and children. "Dr. Jekyll and Mr. Hyde" gives an
extreme picture of such lack of integration, a picture rather fanciful than
drawn from real life.
But we do find in real life cases of dissociation of the personality, also
called cases of double or multiple personality. The individual passes from
one state to another, behaving very differently in the two states, and usually
unable to remember in the primary or more lasting state what he has done
in the secondary state. In the secondary state he remembers what he did in
the primary state, but is apt to speak of it as if done by another person. In
many cases, the primary state seems limited and hampered, as if the
individual were not his complete self, while the secondary state is a sort of
complement to the first, but decidedly imperfect in itself. Thus in the
primary state the individual may be excessively quiet, while in the
secondary state he is excessively mischievous. It is much as if some of his
reaction-tendencies were forcibly kept apart from the rest, so that when
they did become aroused to activity, the remainder of the individual went to
sleep. The individual seems to function in fractions, and never as a whole.
Often the secondary state likes to have a name for itself and to be
considered as a secondary personality, as if two persons were inhabiting
the same body--a very forced conception. The secondary personality will
even assert that it stays awake in the background and watches the primary
personality when the latter is active, spying on it without {560} that
personality being aware of it. Thus two fractions of the individual would be
functioning at the same time, but still not working together as a unit.
This claim of the secondary personality has been experimentally checked
up by Dr. Morton Prince, in the following way. He was able to cause his
subject, a young woman, to pass from the primary to the secondary state
and back again, by a procedure resembling hypnotism. While she was in
the secondary state, he told her that she (the secondary personality) was to
solve an arithmetical problem, the general nature of which he described to
her then and there, while the actual numbers were not shown till she was

CHAPTER XXI

507

put back in the primary state. He then put her into the primary state for a
few moments, and placed the numbers unobtrusively before her, without the
primary personality seeming to notice them. Put back now into the
secondary state, she instantly shouted out the answer to the problem, and
asserted that she (the secondary personality) had had the answer ready for
some time, and had been impatiently waiting to be brought back and
announce it. This is at least prima facie evidence in favor of Dr. Prince's
view, that two separate fractions of the individual were both functioning
consciously at the same time.
It is weird business, however interpreted, and raises the question whether
anything of the same sort, only milder in degree, occurs in ordinary
experience. Here is one somewhat similar fact that we are all familiar with:
we have two matters in hand at the same time, very different in their
emotional tone, one perhaps a worrisome matter of business, the other an
interesting personal matter; and the shift from one to the other feels almost
like changing personalities. Also, while busy with one, we may sometimes
feel the other stirring, just barely awake and dimly conscious.
Also, is not something like this true?--A person, very {561} conscientious in
the performance of his duties, always doing what he is told, feels stirrings
of a carefree, independent spirit, as if some sides of his nature were not
finding expression, and in little ways he gives it expression, not exactly by
taking a "moral holiday" [Footnote: This is one of William James's
expressive phrases.] or going on a spree of some sort, but by venting his
impulses just an instant at a time, so that he scarcely remembers it later,
and in such little ways that other people, also, are scarcely aware of It. He
has a "secondary personality", only it is little developed, and it has its little
place in the conscious life, instead of being dissociated.
In the cases of true dissociation, there was often a violent emotional shock
that started the cleavage. One celebrated case started at 8 years of age,
when the subject, a little girl, was thrown to the floor by a drunken father
angered by finding the child asleep in his bed. From that moment, it would
seem that the frolicsome side of childish behavior was banished from the
main personality, and could get into action only when the main personality

CHAPTER XXI

508

relaxed its control and became dormant; so that thereafter the child
alternated between two states, one very quiet, industrious and
conscientious, the other vivacious and mischievous; and the main
personality never remembered what was done in this secondary,
mischievous state. In such cases, it would appear that the cleavage resulted
from a violent thrusting out from the main personality of tendencies
inconsistent with the dominant (here serious) attitude of that personality.
The Unconscious, or, the Subconscious Mind
Here at last, it may strike the reader, we have come to the core of the whole
subject of psychology; for many readers will undoubtedly have been
attracted by the statements {562} sometimes made, to the effect that the
"unconscious" represents the deeper and more significant part of mental
life, and that psychologists who confine their attention mostly to the
conscious activities are treating their subject in a very partial and
superficial manner. There is a sort of fascination about the notion of a
subconscious mind, and yet it will be noticed that psychologists, as a rule,
are inclined to be wary and critical in dealing with it. Let as take up in
order the various sorts of unconscious mental processes.
In the first place, retention is unconscious. The host of memories that a
person possesses and can recall under suitable conditions is carried about
with him in an unconscious condition. But there need be no special mystery
about this, nor is it just to speak about memories being "preserved in the
unconscious". The fact simply is that retention is a resting condition,
whereas consciousness is an active condition. Retention is a matter of brain
structure, neurone connections, neural mechanisms ready for action when
the proper stimulus reaches them but remaining inactive till the stimulus
comes. An idea is like a motor reaction, to the extent that it is a reaction;
and we retain ideas in the same way that we retain learned motor
reactions. Now no one would think of saying that a learned motor reaction
was retained in the unconscious. The motor reaction is not present at all,
until it is aroused; the neuro-muscular mechanism for executing the
reaction is present, but needs a stimulus to make it active and give the
reaction. In the same way, an idea is not present in the individual except

CHAPTER XXI

509

when it is activated, but its neural mechanism is present, and unconscious
just because it is inactive.
Unconscious inactivity is therefore no great problem. But there is such a
thing as unconscious activity. Two sorts of such activity are well known.
First, there are the {563} purely "physiological" processes of digestion,
liver and kidney secretion, etc. We are quite reconciled to these being
unconscious, and this is not the sort of unconscious activity that gives us
that fascinatingly uncanny feeling. Second, there are the "secondarily
automatic" processes, once conscious, now almost or quite unconscious
through the effect of frequent repetition.
Such unconscious activities occur as side-activities, carried on while
something else occupies attention, or as part-activities that go on while
attention is directed to the total performance of which they are parts. In
either case, the automatism may be motor or perceptive, and the degree of
consciousness may range from moderate down to zero. [Footnote: See pp.
265-267.]
For example, the letters of your name you write almost unconsciously,
while fully conscious of writing your name. When you are reading, the
letters are only dimly conscious, and even the words are only moderately
conscious, while the whole performance of reading is highly conscious.
These are instances of unconscious (or dimly conscious) part-activities.
Unconscious side-activities are illustrated by holding your books firmly but
unconsciously under your arm, while absorbed in conversation, by
drumming with your fingers while puzzling over a problem, and by looking
at your watch and reading the time, but so nearly unconsciously that the
next instant you have to look again. In all such cases, the unconscious or
barely conscious activity has been made easy by previous practice, and
there is no special fascination about it, except such as comes through the
use of that awesome word, "unconscious".
But now for the real "subconscious mind". You try to recall a familiar
name, but are stuck; you drop the matter, and "let your subconscious mind
work"; and, sure enough, after a few minutes you have the name. Or, you

CHAPTER XXI

510

are all {564} tangled up in a difficult problem; you let the subconscious
mind work on it overnight, and next morning it is perfectly clear. Just here
it is that psychology begins to take issue with the popular idea. The popular
interpretation is that work has been done on the problem during the
interval when it was out of consciousness--unconscious mental work of a
high order. But is it necessary to suppose that any work has been done on
the problem during the interval?
The difficulty, when you first attacked the problem, arose from false clues
which, once they got you, held you by virtue of their "recency value".
[Footnote: See pp. 390-391.] The matter laid aside, these false clues lost
their recency value with lapse of time, so that when you took the matter up
again you were free from their interference and had a good chance to go
straight towards the goal.
It is the same with motor acts. On a certain day, a baseball pitcher falls
into an inefficient way of handling the ball, and, try as he may, cannot
recover his usual form. He has to give up for that day, but after a rest is as
good as ever. Shall we say that his subconscious mind has been practising
pitching during the rest interval? It is much more likely that here, as in the
preceding case, the value of a fresh start lies in freshness, in rest and the
consequent disappearance of interferences, rather than in any work that
has been done during the interval of rest.
Next, consider the "co-conscious" as Morton Prince has well named the
presence and activity of the secondary personality along with the primary,
as in his experiment described above. Here it seems that two streams of
consciousness were flowing along side by side within the same individual.
There is the activity of the main personality, and there is the activity of the
secondary personality, going on at the same time without the knowledge of
the main {565} personality. This is a way of reading the facts, rather than a
simple statement of fact, but at least it is a reasonable interpretation, and
worthy of consideration.
Unconscious Wishes and Motives

CHAPTER XXI

511

Schopenhauer wrote much of the "will to live", which was, in his view, as
unconscious as it was fundamental, and only secondarily gave rise to the
conscious life of sensations and ideas. Bergson's "élan vital" has much the
same meaning. In a sense, the will to live is the fountain of all our wishes;
in another sense, it is the sum total of them all; and in another sense, it is
an abstraction, the concrete facts consisting in the various particular
wishes and tendencies of living creatures. The will to live is not simply the
will to stay alive; it is the will to live with all that that includes. Life is
activity, and to live means, for any species, to engage in the full activity
possible for that species.
The will to live is in a sense unconscious, since it is seldom present simply
in that bald, abstract form. But since life is activity, any will to act is the
will to live in a special form, so that we may perfectly well say that the will
to live is always conscious whenever there is any conscious impulse or
purpose.
In this simple statement we may find the key to all unconscious motives,
disregarding the case of dissociation and split personality. If you analyze
your motives for doing a certain act and formulate them in good set terms,
then you have to admit that this motive was unconscious before, or only
dimly conscious, since it was not formulated, it was not isolated, it was not
present in the precise form you have now given it. Yet it was there,
implicated in the total conscious activity. It was not unconscious in the
sense of being active in a different, unconscious realm. The realm in which
it was active was that of conscious activity, and it formed an {566}
unanalyzed part of that activity. It was there in the same way that overtones
are present in perceiving the tone quality of a particular instrument; the
overtones are not separately heard and may be very difficult to analyze, yet
all the time they are playing an important part in the conscious perception.
In the same way, we may not "realize" that we are helping our friend as a
way of dominating over him, but think, so far as we stop to think, that our
motive is pure helpfulness. Later, analyzing our motives, we may separate
out the masterful tendency, which was present all the time and consciously
present, but so bound up with the other motive of helpfulness that it did not

CHAPTER XXI

512

attract attention to itself. Now if our psychology makes us cynics, and leads
us to ascribe the whole motivation of the helpful act to the mastery impulse,
and therefore to regard this as working in the unconscious, we are fully as
far from the truth as when we uncritically assumed that helpfulness was the
only motive operating.
For man, to live means a vast range of activity--more than can possibly be
performed by any single individual. We wish to do a thousand things that
we never can do. We are constantly forced to limit the field of our activity.
Physical incapacity, mental incapacity, limitations of our environment,
conflict between one wish and another of our own, opposition from other
people, and mere lack of time, compel us to give up many of our wishes.
Innumerable wishes must be laid aside, and some, resisting, have to be
forcibly suppressed. Renunciation is the order of the day, from childhood
up to the age when weakness and weariness supervene upon the zest for
action, and the will to live fades out into readiness to die.
What becomes of the suppressed wishes, we have already briefly
considered. [Footnote: See p. 533.] We have noticed Freud's conception
{567} that they live on "in the unconscious". Nothing ever learned, he
would say, can ever be forgotten, and no wish ever aroused can ever be
quieted, except by being gratified either directly or through some substitute
response. Each one of us, according to this view, carries around inside of
him enough explosive material to blow to bits the whole social structure in
which he lives. It is the suppressed sex wishes, and spite wishes growing
out of thwarted sex wishes, that mostly constitute the unconscious.
These unconscious wishes, according to Freud, motivate our dreams, our
queer and apparently accidental actions, such as slips of the tongue and
other "mistakes", the yet queerer and much more serious "neurotic
symptoms" that appear in some people, and even a vast deal of our serious
endeavor in life. All the great springs of action are sought in the
unconscious. The biologist, consciously, is driven by his desire to know the
world of plants and animals, but what really motivates him, on this view, is
his childish sex curiosity, thwarted, driven back upon itself, and finding a
substitute outlet in biological study. And so, in one way or another, with

CHAPTER XXI

513

every one of us.
All this seems to depart pretty far from sober reality, and especially from
proved fact. It involves a very forced interpretation of child life, an
interpretation that could never have arisen from a direct study of children,
but which has seemed useful in the psychoanalysis of maladjusted adults. It
is a far cry from the facts that Freud seeks to explain, to the conception of
the infantile unconscious with which he endeavors to explain them.
Freud's conception of life and its tendencies is much too narrow. There is
not half enough room in his scheme of things for life as it is willed and
lived. There is not room in it even for all the instincts, nor for the "native
likes and dislikes"; and there is still less room for the will to live, in {568}
the sense of the zest for all forms of activity, each for its own sake as a form
of vital activity. Any scheme of motivation, which traces all behavior back
to a few formulated wishes, is much too abstract, as was illustrated just
above in the case of the helpful act.
Freud is apparently guilty of yet another error, in supposing that any
specific wish, ungratified, lives on as the same, identical, precise wish. A
very simple instance will make clear the point of this criticism. Suppose
that the first time you definitely mastered the fact that "3 times 7 are 21", it
was in a certain schoolroom, with a certain teacher and a certain group of
schoolfellows. You were perhaps animated at that moment by the desire to
secure the approval of that teacher and to shine before those schoolfellows.
Does it follow, then, that every time you now make use of that bit of the
multiplication table, you are "unconsciously" gratifying that wish of long
ago? To believe that would be to neglect all that we have learned of
"shortcircuiting" and of the "substitute stimulus" generally. [Footnote: See
p. 338.] That wish of long ago played its part in linking the response to the
stimulus, but the linkage became so close that that precise wish was no
longer required. The same response has been made a thousand times since,
with other wishes in the game, and when the response is made to-day, a
new wish is in the game. It is the same with the biologist. Suppose, for the
sake of argument, what probably is true in only a fraction of the cases, that
the biologist's first interest in making any minute study of animals arose

CHAPTER XXI

514

from sex curiosity. As soon, however, as he engaged in any real study of
animals, substitute stimuli entered and got attached to his exploring
responses; and to suppose that that identical wish of long ago is still
subconsciously active, whenever the biologist takes his microscope in hand,
is to throw out all {569} these substitute stimuli and their attachments to
many new responses, and to see in a very complex activity only one little
element.
In making use of the conception of the unconscious to assist us in
interpreting human conduct, we are thus exposed to two errors. First,
finding a motive which was not analyzed out by the individual, and which
was only vaguely and implicitly conscious, and formulating that motive in
an explicit way, we are then liable to the error of supposing that the motive
must have been explicitly present, not indeed in consciousness but in the
unconscious; whereas the whole truth is exhausted when we say that it was
consciously but only implicitly present--active, but not active all alone.
Second, having traced out how a certain act was learned, we are apt to
suppose that its history is repeated whenever it is performed afresh--that
the wishes and ideas that were essential to its original performance must be
unconsciously present whenever it is once more performed--neglecting thus
the fact that what is retained and renewed consists of responses, rather
than experiences. What is renewed when a learned act is performed is not
the history of the act, but the act itself. In a new situation, the act is part of
a new performance, and its motivation is to some degree new.
Though his theories are open to criticism, Freud has made important
contributions to the study of personality. The same can be said of other
schools of psycho-pathology. Jung and Adler deserve mention as
representing varieties of psychoanalysis that differ more or less radically
from that of Freud. Outside of the psychoanalytic school altogether, Janet
and Morton Prince have added much to psychological knowledge from
their studies of dissociated and maladjusted personalities. In endeavoring
to assist the maladjusted individual, all these schools have much in
common, since they all seek to bring to his attention elements in his
personality {570} of which he is not clearly aware. Clear consciousness of
implicit or dissociated elements in one's personality often proves to be a

CHAPTER XXI

515

step towards a firmer organization of the personality and towards a better
adjustment to the conditions of life.
{571}
EXERCISES
1. Outline the chapter.
2. Mention some personal traits that appear when the individual is dealing
with inanimate things, and some that only appear in dealing with other
persons.
3. Construct a "rating scale" for the trait of independence, as follows.
Think of some one who is extremely independent, and call him A; of some
one who is at the opposite extreme and call him E; of some one standing
halfway, and call him C; and fill in the positions B and D with other
persons standing between A and C and between C and E, in this matter of
independence. You now have a sort of measuring rod, with the five persons
A, B, C, D and E marking degrees of the trait. To rate any other individual,
consider where he belongs on this scale--whether even with A, with B, etc.
4. How does the embarrassing "self-consciousness" of one who is speaking
in public differ from simple consciousness of self?
5. Consider what was conscious and what unconscious in the following
case of "shell shock": A sharpshooter had a certain peekhole in the front of
the trench through which he was accustomed to take aim at the enemy. The
enemy evidently spotted him, for bullets began to strike close by as soon as
ever he got up to shoot. He stood this for a time, and then suddenly lost the
sight of his right eye, which he used in aiming.
6. Explain the difference between unconscious action of the dissociated
type and of the implicit type.
REFERENCES

CHAPTER XXI

516

For attempts to utilize psychological methods in the study of personality,
see F. L. Wells, Mental Adjustments, 1917; also Chapter 11 in Watson's
Psychology, 1919.
Much interesting psychological material, along with a good deal of
philosophical discussion, is contained in James's chapter on the
"Consciousness of Self" in Vol. I of his Principles of Psychology, 1890.
For a discussion of the unconscious, see the symposium on Subconscious
Phenomena, 1910, participated in by Münsterberg, Ribot, Janet, Jastrow,
Hart and Prince.
On dissociation, see Morton Prince's Dissociation of a Personality.
For Freud's doctrine of the unconscious, see his Psychopathology of
Everyday Life, translated by Brill.
INDEX
Abulia, 499, 539-541, 545-546
Accessory sense-apparatus, 192-196, 200
Acquired reactions, 89-90, 94, 99-102, 112-114, 144, 247, 296-829, 399
Adaptation, of attention, 247, 260; negative, 302-303, 310, 312; sensory,
224-225, 447
Adjustment, 72, 78-79, 131, 178, 382, 385, 420, 430, 431, 433
Adler, 569
Adrenal glands, 123-124, 554
Advantage, factors of, 245-248, 259, 382; law of, 256

CHAPTER XXI

517

Aggressive behavior, 160-161, 164-165
After-images, 226-227, 451-452
Ambiguous figures, 253-254, 425
Analysis, of motives, 565-566, 569; of sensations, 197, 201, 203, 205-206,
211-212, 230, 233
Anger, 118, 122-123, 125-126, 131-132, 158-159, 163, 300-301, 429-430
Animal behavior, 8-9, 14, 39-40, 76-79, 93-94, 97, 105-107, 109-111, 116,
121-122, 141, 145, 147, 148, 156, 159, 160, 298, 302-311, 313-314,
317-320, 436, 463-464
Aphasia, 57-60, 62, 428
Appetite, 125, 126
Applied psychology, 3-4
Apraxia, 57, 63-64, 428
Aptitudes, 101, 288-289, 291, 293
Area, auditory, 50, 59-60, 62; motor, 50-57; olfactory, 62-63; somesthetic,
50, 62-63; speech, 58-60, 62; visual, 50, 53, 62-63
Aristotle, 394, 454
Art, 182-183, 512-516
Assertiveness, see Self-assertion
Association, 366; by contiguity, 395-398, 405; free, 376-381; by similarity,
395-396, 405-408, 519; laws of, 389-417; controlled, 381-385, 413-414,

CHAPTER XXI

417
Association fibers, 56, 416-417, 424
Atrophy through disuse, 349, 390, 415
Attachment of stimulus and response, 25, 34-35, 53-54, 84, 92, 112, 135,
139, 298-301, 303, 311, 338, 372, 377-379, 390, 392, 394, 399-412,
414-417, 433
Attention, 244-269, 381, 421, 433
Attitude of attention, 249; of thought, 249, 464
Autistic thinking, 508-510
Automatism, 26, 328, 338, 383-384, 433, 525, 563
Autonomic nerves, 124-125
Auto-suggestion, 549
Avoiding reaction, 24-25, 142-144, 305, 310
Axon, 31-38, 51-52, 56, 61, 64, 189-192
Baldwin, 243
Basilar membrane, 196, 234-235
Behavior psychology, 1, 8-9, 18, 21
Bergson, 565
Betts, 388

518

CHAPTER XXI

Big, appeal of the, 515-516
Binet, 272-273
Binet tests, 272-275
Binocular, rivalry, 253-254; vision, 442-443
Biology, 5; liking for, 182
Black, a sensation, 218, 223-224
Blends, 197-199, 202-203, 205-206, 219-220, 232, 301, 424, 500
Bloomfield, 104
Boasting, 169, 495
Book, W. F., 325
Brain, 14-15, 28-30, 49-66, 292-293; stem, 29-330, 32, 33, 50
Brown, Warner, 449
Bryan, 321
Cajal, 51, 61, 239
Callosum, 56, 62
Cannon, 136
Carr, 314
Caution, 156, 511

519

CHAPTER XXI

520

"Censor," 505-506
Central neurone, 37-39
Cerebellum, 29-30, 35, 50, 65
Cerebrum, 29-30, 50-64, 292-293
Character, 529, 555
Child, behavior, 91-92, 94-97, 100-101, 138, 141, 143-144, 147, 150-159,
162-168, 297-298, 300-301, 303-304, 313-314, 319, 357-358, 434-435,
437, 445, 481-483, 485-487, 490, 501, 504, 506, 526-527
Choice, 528-535
Cochlea, 192, 195-196, 234-235
Co-conscious, 564
Collecting instinct, 141
Color, liking for, 183; circle, 207; cone, 209; pyramid, 209; sense,
204-228; theories, 220-224; tone, 206-207, 213-215; triangle, 217; zones,
211-212; mixing, 214-217
Color-blindness, 209-211
Colored hearing, 376
Combination, 80, 135, 140, 148, 260-261, 299, 301, 306-308, 311,
323-326, 334, 479, 519; law of, 263-264, 398-417, 431-432, 468
Comparative method, 14-15
Comparison, 466-467

CHAPTER XXI

521

Compensatory movements, 236-238
Complementary colors, 216-217, 227-228
"Complexes," 381
Conditioned reflex, 303-304, 312, 401-402
Cones, 191, 226
Consciousness, 7-8; of animals, 8-9; degrees of, 172, 265-267, 338,
383-384
Constant error, 447-448
Constitution, native, 91, 92, 98, 271, 289-292
Constructiveness, 154, 482
Contentment, 156-157
Contiguity, association by, 395-398, 405
Contrast, visual, 227-228
Control, 55, 257, 298, 320, 335-336, 348, 381-385, 413-414, 417, 484, 511
Coördination, 30, 37-39, 41, 55-59, 66, 260-261, 299, 410-412, 534-535
Correlation method, 14-16, 283-285
Cortex, 50, 52, 56-63, 293, 414, 423
Counter-suggestion, 549
Cramming, 342, 346

CHAPTER XXI

522

Criteria of instinct, 92, 97, 138
Criticism, 499-500, 503, 505, 508-512, 547
Crying, 144
Curiosity, 154-157, 181, 244, 258
Curve, of distribution, 280; of forgetting, 350, 390; of learning or practice,
307, 316, 321, 325, 390
Cutaneous senses, 197-201, 224, 440, 451
Dallenbach, 362
Daring, 489, 518-519
Darwin, 127, 136
Davenport, 104
Day dreams, 493-499
Decision, 528-535
Defense mechanisms, 533, 535
Defensive reactions, 24-26, 142-144, 159-160, 162-164, 310
Delayed reaction, 76-77, 429
Delusion, 509
Dendrites, 31-32, 34-35, 51, 61, 190, 414
Detachment of response from stimulus, 299, 302, 310, 328

CHAPTER XXI

Determining tendency, 72, 380-385
Dewey, 480
Differential psychology, 3, 12, 180, 210, 271, 272, 274, 279-280, 286,
291-292, 368-370, 374, 548
Digestion, 121-123, 125
Discord, 232
Discovery, 421, 462
Discrimination, 435-437
Disgust, 127, 312
Dissociation, 559-561
Distraction, 259-260, 356-356
Distribution of intelligence, 274-275, 279-281
Dizziness, 238
Domination, 165
Dot figure, 252
Doubt, 472-473
Drainage, 269
Dreams, 499-508
Ear, 191-192, 195-196, 236-238

523

CHAPTER XXI

524

Ebbinghaus, 350, 365
Economy of effort, 151; in memorizing, 338-346, 353
Effect, law of, 391-393, 413
Effort, 127, 162, 259-260, 534, 539
Egocentric response, 380
Elementary, feelings, 173, 184-185; sensations, 197-198, 201, 203,
211-212, 216-220, 233-234
Elimination in learning, 306, 308-309, 310, 314, 327
Emotion, 118-136, 137-169, 173, 299-301, 345, 355, 361, 381, 513-514,
554, 661
Empathy, 491, 516-516
Emulation, 165-166
End-brush of an axon, 33-36, 38, 61
Endocrine glands, 122-123, 554
Energy, conservation of, 40; dammed-up, 82-84, 301, 309, 393; released,
535-546; stored, 40-41, 46
Envy, 166, 168
Equilibrium, 65
Errors, 446-459, 467
Escape tendency, 142-144, 489, 498-499

CHAPTER XXI

525

Esthetics, 443-444, 457-458
Euphoria, 120, 151
Excitement, 126
Exercise, effect of, 297-298; law of, 389-391, 393-394, 413-415
Experiment in psychology, 12-15, 93, 302, 333
Explanation, 471-472
Exploration, 154-157, 244, 249-252, 258, 288, 305, 421, 462-465, 470
Expressive movements, 126-128
Eye, 32, 34-35, 62, 191, 198-196; movements of, 249-251
Facilitation, 54-55, 78, 83-85, 248, 257, 263, 382-385, 413-414, 417
Factors, in attention, 245-248, 259; in intelligence, 285-288; in
memorizing, 345-346; in personality, 553-555; in recall, 379, 382
Faculties, 523
Fallacy, 467-468, 479
Father complex, 606
Fatigue, 73-74, 119, 123, 145, 151
Fear, 125-126, 129-133, 142-144, 153, 303-304, 489, 497-498, 504, 513,
516, 539-540; abnormal, 133, 497-498
Feeble-mindedness, 275, 290-292, 446

CHAPTER XXI

526

Feeling, 172-185; of activity, 45-46; of excitement, 126, 184-185; of
familiarity, 185, 357-360; of readiness, 75, 383; of tension, 78-79, 184-185
Feeling-tone, 174-176, 178, 180-181
Feleky, 136
Fernald, 388
Fiction, 512-513
Fighting, 158-161
Fissures of the brain, 50
Fixation, 298
Fluctuation of attention, 254-255
Flying, 93
Forgetting, 349-353, 415
Forgotten name, 356, 563-564
Fovea, 193, 211, 226
Free association, 376, 504, 507; test, 380
Frequency, 379, 390, 433
Freshmen, intelligence of, 279-281
Freud, 505-508, 522, 566-569, 571
Galton, 368, 388

CHAPTER XXI

Gamble, 243
Games, 487
Gates, 339, 365
General psychology, 4-5
Genetic method, 15-16, 90
Genius, 99
Glands, 25, 122-124, 303
Gliding dream, 503
Golden section, 444
Gray matter, 35-36, 50-52, 56, 61-62
Gregariousness, 110, 146-147
Group tests, 276-277
Habit, 89, 112-114, 157, 247-248, 260, 328-329, 381
Hallucination, 375-376, 501, 547
Hart, 571
Harter, 321
Hearing, 50, 59-60, 62, 228-235, 439-440
Helmholtz, 220, 234, 475

527

CHAPTER XXI

Helplessness, 144, 149
Henning, 203, 243
Herd instinct, 110, 146-147
Heredity, 91, 98, 100-101, 118, 289-292
Hering, 220-221
Hero, worship, 168; conquering and suffering, 494-496, 509
Herrick, 44, 67
Hesitancy, 530
Hicks, 306, 314
Higher units, 323-326, 334, 410-412
Hollingworth, 20, 104, 243
Homing, 78, 146
Humor, theories of, 157-168
Hunger, 79-81, 120, 140-141, 204
Hunter, 88, 295
Hunting instinct, 72, 78, 140-141
Hypnosis, 349, 547-548
Hypothesis, 473-475

528

CHAPTER XXI

Ideomotor action, 527-528
Illusion, 424, 450-459, 500, 547
Imageless thought, 374
Imagery, mental, 368-376, 499-500; in perception, 425-427; types, 370
Imagination, 481-520, 525
Imitation, 319, 486
Impulse, 132-135, 155, 167, 177, 299, 524-525, 539
Incentives, 541-546
Incidental memory, 346-348, 397
Independence, 163-164
Individual, 91
Individual psychology, see Differential psychology
Induction, 374-375
Inference, 465-468, 475-476, 479
Inferiority, sense of, 166, 168, 496, 510, 555
Inheritance of acquired traits, 113-114
Inhibition, 25, 54-55, 78, 83-84, 122-125, 248, 257, 263, 314, 382, 384,
429-430, 528, 540
Initiative, 545

529

CHAPTER XXI

530

Insane, 269, 508-609
Insight in learning, 316-320
Instinct, 105-116, 137-169, 179, 181, 488-489, 492, 513, 554; criteria of,
92, 97, 138; and emotion, 134-135; modification of, 299-301
Integration, 558-561
Intelligence, 90-91, 271-293, 538, 555; tests of, 3, 272-277, 281-283
Intelligence quotient, 274-275, 289-290
Intensity of sensation, 206; of reaction, 379, 391, 433
Interest, 181-184, 248, 257-259
Interference, 355-356
Internal secretions, 122-123, 554
Intra-uterine life, 90-92
Introspection, 10-11, 19
Invalidism, 546
Invention, 421, 475, 484, 485, 509-512, 517, 619
"IQ," 274-275
Isolation, 431-432, 435-437, 455-459, 468,479
James, 117, 129, 136, 331, 365, 418, 480, 511, 551, 561, 571
James-Lange theory, 128-130

CHAPTER XXI

531

Janet, 569, 571
Jastrow, 571
Jennings, 88
Jost, 342
Judd, 461
Judgment, 550
Jung, 388, 569
Kimmins, 522
Kinesthesis, 240
König, 217
Ladd, 44
Ladd-Franklin, 221-224, 243, 453
Lange, 129
Lashley, 88
Laughter, 157-168, 161
Law, of advantage, 256; of association, 394-398; of attention, 256,
262-263, 267; of combination, 263-264, 398-417; of effect, 391-393; of
exercise, 389-391, 393-394; of habit, 389; of reaction, 256, 262-263, 267;
of selection, 256, 262, 378, 382; of shifting, 256, 263; of tendency, 81, 263

CHAPTER XXI

Learning, 93-94, 96, 99, 112, 113, 143-144, 296-329; laws of, 389-417,
433
Libido, 507
Light, 212-213
Likes and dislikes, 178-184, 291, 492-493, 513
Linkage, see Attachment
Lobes of the brain, 50
Local sign, 440-441
Locomotion, 93-97, 99, 152-153, 486
Logic, 475-476
Love, 535
Loyalty, 169, 531
Make-believe, 482-483, 508
Management, of action, 541-546; of attention, 267-268; of memory,
338-346, 353, 356, 360-363; of reasoning, 478-479
Manipulation, 154, 315, 481-483
Massed learning, 341-343, 345
Mastery impulse, see_ Self-assertion
Martin, 28

532

CHAPTER XXI

Mathematics, liking for, 181-182
Mating instinct, 97, 116, 147-148
Maturing, 92, 96
Maury, 501
Maze learning, 305-308, 318-314
McDougall, 136, 171, 418, 551
Meaning, 421, 482-483
Median, 280
Memorizing, 333-346, 360-363
Memory, 332-363
Memory colors, 426
Mental action, 6-7, 45-47
Mental age, 273-274
Mental set, 72, 382-385, 413-414, 417, 433, 452
Mental work, 384
Methods of psychology, 9-16
Mnemonic systems, 363
Modification of reactions, 297-299

533

CHAPTER XXI

534

Moll, 551
Morale, 543-545
Morgan, 270
Mother complex, 506
Mother instinct, 148-150, 159, 161
Motive, 69, 72, 84-85, 137, 257-258, 469-473, 487-499, 501-510, 513-517,
528-546, 565-570
Motor, area, 50-54; centers, 50-59, 65, 66; nerve, 27, 30-33, 36-37, 39, 50,
52-53
Movement, expressive, 126-128; reflex, 24-26; skilled, 55-59, 268,
321-326, 410-412; voluntary, 53-55, 298
Moving pictures, 454
Müller-Lyer illusion, 455-456, 459
Münsterberg, 265, 571
Muscle sense, 225, 238-240
Music, 235; liking for, 182-183, 291
Music deafness, 60
Native traits, 89-102, 297
Negative adaptation, 302-303, 310, 312, 413

CHAPTER XXI

Nerve, 26, 30, 32; autonomic, 124-125; cell, 31-36, 51, 414; center, 26,
29-30, 49-66, 76, 82-84, 96, 107, 125, 293; fiber, 32
Nervous system, 27-29, 32, 41, 124
Nesting, 105, 110-112
Neurone, 32-36, 51, 61, 346, 414-417
Newton, 212
Nicoll, 522
Nightmare, 504
Noise, 231, 236
Nonsense syllables, 334
Non-sensory recall, 373-375
Norsworthy, 20, 104, 522
Object blindness, 62
Objective observation in psychology, 9, 11-13
Observation, 267; learning by, 317-320, 333-337, 348, 367-375
Obstruction, 162-163, 177, 534-559
Organic needs, responses to, 139-145
Organic sensations, 119-120, 128, 204
Organic state, 72-74, 79, 82, 119-126, 132-133, 175-176

535

CHAPTER XXI

Original nature, 91, 92, 98
Organization of the individual, 527, 529, 532, 558
Otolith, 192, 238
Overlapping, 324-325, 412
Overtones, 230, 438
Pain, 173, 198-201
Paired associates, 336, 347, 404
Paralysis, 57, 547
Parental instinct, 148-150
Parsons, 243
Path, auditory, 62; motor, 51-53, 62; tactile, 62, 64
Pathological method, 16
Patterns, 204-205
Pechstein, 344
Perception, 45, 60, 62-63, 65-66, 419-459, 462, 465, 468, 475-476, 479,
520
Performance tests, 275-276
Perseveration, 355
Personality, 552-570

536

CHAPTER XXI

Perspective, 435, 441-442, 453-454
Phrenology, 52, 65, 293
Physiognomy, 445-446
Physiological limit, 321
Physiology, 6-7
Physique, 553
Piano theory of hearing, 234-235
Piéron, 342
Pillsbury, 270, 295
Pintner, 295
Pitch, 229-230, 450
Place associations, 304, 305, 315, 333
Plan, 483, 493, 539-540
Plateau, 322
Play, 139, 148, 151-152, 160, 485-499, 504-505, 517
Pleasantness and unpleasantness, 173-180, 184-185
Poffenberger, 20, 104, 243
Poggendorf illusion, 457, 459

537

CHAPTER XXI

538

Practice, 177, 298, 304-310, 314-317, 321-327, 360-363, 433, 538; curve,
307, 316, 321, 325, 390, 542
Preparation for action, 22-25, 72, 74-77, 427-430
Preparatory reactions, 77-84, 111-112, 125-128, 132, 139-140, 145, 147
Prestige, 549
Prince, 559, 564, 569, 571
Problem solution, 385, 465, 469-470, 477, 514
Proofreader's illusion, 453
Protozoa, 39-40, 188, 302
Psychiatry, 16
Psychoanalysis, 505-508, 521, 533, 567-669
Psychology, definition of, 1-2, 5-8, 17-18; methods of, 9-16; varieties, 2-6
Psychopathology, 16, 498, 540-541, 545-550, 567, 569
Punishment, 304-305
Purpose, 69-71, 75, 78, 524-527, 542
Puzzle experiment, 308-310, 315-319, 463-464
Pyle, 343
Pyramid cells, 51, 52, 61
Pyramidal tract, 52-55, 57, 62

CHAPTER XXI

539

Random activity, 151-152
Rationalization, 470-471, 531
Raynor, 331
Reaction, 22-26, 39-41, 45-49, 65-66, 68, 75, 84, 256, 262-263, 266, 423,
428; acquired, 89-90, 94, 99-102; delayed, 76-77, 429; native, 89-102;
preparatory, 77-84, 111-112, 125-128, 132; time, 22-24, 75, 424
Reading, 250-251, 258, 262, 267-268, 384, 427, 453, 512-513
Reaney, 522
Reasoning, 320, 422, 462-479, 520; in animals, 310, 317-318, 463-464
Recall, 354-356, 366-385, 413, 422, 469-471, 500, 519, 563
Recency, 345, 356, 379, 390, 433, 511, 563
Recitation in memorizing, 339-341
Recognition, 187, 357-360
Red-green blindness, 210
Reflex, 24-26, 53, 107-109, 256, 297; conditioned, 303-304; control of,
54-55; arc, 26-30, 34, 36-37; centers, 30, 53
Relationships, response to, 286-287, 317, 320, 333-336, 345, 404-405, 432,
467-468, 520
Relief, 79, 84
Reproduction, instinct of, 116

CHAPTER XXI

Respiration, 37, 55, 141, 176, 527
Response by analogy, 405-406, 435, 452-455
Restlessness, 78-79, 112
Retention, 286, 302, 349-353, 360, 562
Retina, 191, 193, 195, 210-211, 233, 441-442
Revery, 376-380
Ribot, 571
Rivalry, 165-166, 474, 489, 543; binocular, 253-254
Robinson, 522
Rods, 191, 226
Rotation, sense of, 236-238
Rosanoff, 20
Rote learning, 333, 337
Royce, 522
Ruger, 316
Sanford, 252
Satisfaction, 79, 84, 109-110, 132, 472, 487-499, 501-510, 513-517,
533-535, 540
Saturation of colors, 207-208, 213-214, 217

540

CHAPTER XXI

541

Scatter, 23, 273, 298, 448
Schopenhauer, 565
Science, 3-4, 473-475; liking for, 181-182
Scott, 93, 551
Seashore, 295
Secondary personality, 559-561, 564
Selection, 256, 262. 378, 382
Self, 428, 555-558
Self-activity, 46-47
Self-assertion, 158, 161-169, 181, 183, 258-259, 287, 472-478, 489-496,
502-503, 508, 513, 515-516, 531, 536-537, 545-546, 549, 556-558
Self-criticism, 509-511
Selfishness, 557
Self-preservation, 115-116, 507
Semicircular canal, 192, 194, 195, 225, 236-238, 486
Sensation, 6, 19, 46, 60, 62-64, 120, 187-240; and feeling, 173-174;
feeling-tone of, 174-175; and perception, 423-425; recall of, 368-376
Sense, cells, 189-192; organs, 188-196, 199-200, 236-239, 249; perception,
421-422

CHAPTER XXI

542

Sensory, nerve, 27, 30, 32-34, 36-38, 188-189, 191, 193, 196, 239-240;
areas, 50, 59-66, 423
Setting of an object, 358
Sex, attraction, 97, 116, 125, 147-148, 488, 507-508, 534-535; differences,
281
Sex differences, 281
Shame, 166, 168
Shell shock, 504
Shifting of attention, 251-256
Short-circuiting in the process of learning, 338, 405, 568
Shyness, 166
Sight, 32, 34-35, 62, 191, 193-195, 204-228, 231-234, 441-443
Sign and meaning, 421, 437-446
Signal experiment, 304-305, 312
Similarity, association by, 395-396, 405-408
Size-weight illusion, 459-460
Skill, 55-59, 268, 282, 348, 352, 410-412, 428, 482, 488
Skin senses, 197-201, 224, 440, 451
Sleep, 145, 499-500

CHAPTER XXI

Smell, 29, 32, 62, 63, 190, 201, 203-204, 224
Snyder, 343
Sociability, 181, 183-184, 489, 492
Social, behavior, 145-151, 510. 552, 558-559; perception, 444-446, 512,
555
Sociology, 5
Song of birds, 98-94
Sound, 228-231
Space, 439-443
Spaced repetition In learning, 341-343, 345, 390
Spaulding, 93
Span of attention, 261-262
Speech, 6, 60, 94, 98, 113, 154, 325, 402-403, 416; centers, 57-62
Spinal cord, 29-33, 50, 52, 55, 64
Spite, 507
Staircase figure, 253
Starch, Daniel, 20, 331
Starr, 56
Statistical measures, 14-15, 280, 283-285

543

CHAPTER XXI

544

Stereoscope, 254, 442
Stiles, 44, 67
Stimulus, 22, 24, 26-27, 34, 40-41, 46-49, 188, 484-486, 500-501; central,
48-49, 368, 371, 422, 468, 500, 528; internal, 41, 47, 79, 119, 128, 132
Story-telling, 482-483
Straining, 162-163
Strong, 246, 351
Struggle for existence, 114
Subconscious minds, 563-564
Sublimation, 533-535
Submissive tendency, 166-169, 287, 516, 549
Substitute, response, 299-301, 305, 311, 328, 400, 409-413, 430, 436-437,
498-499, 533; stimulus, 298, 300, 303, 311, 368, 371-372, 376, 400-409,
416, 434, 568
Suggestion, 546-650
Suppression, 505-508, 533, 566-567
Surprise, 155
Survival value, 114, 139, 148, 151, 160
Survivals, 127
Sustained attention, 257-260

CHAPTER XXI

545

Syllogism, 476-479
Symbols, 383, 468, 505-507
Symmetry, 444
Synapse, 34-35, 96, 414-416
Synesthesia, 376
Tact, 555
Taste, 189-190, 201-208, 224
Taussig, 522
Telegraphy, learning of, 321-323
Temperament, 553-554
Temperature, responses, 141-142; sense, 197-201, 224-225
Tendency, 68-85, 109-112, 116, 130-135, 137-169, 177, 257, 263, 299-301,
309, 348, 367, 382, 392-393, 408-409, 417, 483-499, 501-510, 512-516,
528-546, 561
Terman, 272, 296
Testimony, 347, 352, 397
Tests, 3, 12, 14, 272-277, 281-283, 548
Thalamus, 56, 62, 64-65, 178
Thinking, 48-49, 319-320

CHAPTER XXI

546

Third dimension, 441-443
Thirst, 79-81, 120-121, 139-140, 179
Thorndike, 20, 104, 171, 331, 418
Thought and action, 539-541
Thrill, 489, 498-499
Thyroid gland, 123, 554
Timbre, 231
Time, 438-439, 447
Titchener, 186, 242, 270, 461
Touch, 50, 62, 63, 197-201; spots, 198
Toys, 486-497
Training of memory, 360-363
Traits, native and acquired, 89-102
Transfer, 316-317, 361-362
Trial and error, 112, 305, 309, 311, 313, 315, 335, 392, 409, 424, 426, 430,
462-465, 526
Typewriting, learning of, 324-325, 411-412, 518, 525-526, 537
Unconscious, activity, 265-266, 383-384, 506-508, 525-526, 562-565;
emotion, 118-119; feeling, 172; motive, 565-569; retention, 348-349, 562

CHAPTER XXI

Unintentional learning, 346-348
Utility, of emotion, 125-127; of instinct, 114, 144-145; of reflexes, 125
Vacillation, 530
Variability, 23, 273, 298, 369, 447-448
Verification of hypotheses, 473-475
Visual, area, 62; images, 370; perception, 441-443, 450; sensations,
204-228, 231-234
Visualist, 370
Vocalization, 93-94, 154
Voluntary action, 298, 524-528
Vowels, 231
Walking, 95-97, 99, 153
Warming-up, 74, 119-120, 343, 391
Warren, 171, 242, 418, 461
Washburn, 19, 88, 331
Watson, 20, 88, 117, 171, 307, 308, 331, 571
Watt, 243
Weber's law, 449-450
Weight, perception of, 448-450, 459-460

547

CHAPTER XXI

Wells, 571
Whipple, 295, 365
White matter, 32, 35-36, 56, 62
Whitley, 20, 104, 522
Whole and part study, 343-346
Will, 523-550; to learn, 346-348; to live, 565
Wish, 496-497, 501-509, 565
Word blindness, 62; deafness, 59
Worry, 497-499
Wundt, 184
Yerkes, 104, 295
Young, 220
Youth, 147, 164, 495, 519
Zoellner illusion, 459
End of the Project Gutenberg EBook of Psychology, by Robert S.
Woodworth
*** END OF THIS PROJECT GUTENBERG EBOOK PSYCHOLOGY
***
***** This file should be named 31382-8.txt or 31382-8.zip ***** This
and all associated files of various formats will be found in:

548

CHAPTER XXI

549

http://www.gutenberg.org/3/1/3/8/31382/
Produced by Don Kostuch
Updated editions will replace the previous one--the old editions will be
renamed.
Creating the works from public domain print editions means that no one
owns a United States copyright in these works, so the Foundation (and
you!) can copy and distribute it in the United States without permission and
without paying copyright royalties. Special rules, set forth in the General
Terms of Use part of this license, apply to copying and distributing Project
Gutenberg-tm electronic works to protect the PROJECT GUTENBERG-tm
concept and trademark. Project Gutenberg is a registered trademark, and
may not be used if you charge for the eBooks, unless you receive specific
permission. If you do not charge anything for copies of this eBook,
complying with the rules is very easy. You may use this eBook for nearly
any purpose such as creation of derivative works, reports, performances and
research. They may be modified and printed and given away--you may do
practically ANYTHING with public domain eBooks. Redistribution is
subject to the trademark license, especially commercial redistribution.
*** START: FULL LICENSE ***
THE FULL PROJECT GUTENBERG LICENSE PLEASE READ THIS
BEFORE YOU DISTRIBUTE OR USE THIS WORK
To protect the Project Gutenberg-tm mission of promoting the free
distribution of electronic works, by using or distributing this work (or any
other work associated in any way with the phrase "Project Gutenberg"), you
agree to comply with all the terms of the Full Project Gutenberg-tm License
(available with this file or online at http://gutenberg.org/license).
Section 1. General Terms of Use and Redistributing Project Gutenberg-tm
electronic works

CHAPTER XXI

550

1.A. By reading or using any part of this Project Gutenberg-tm electronic
work, you indicate that you have read, understand, agree to and accept all
the terms of this license and intellectual property (trademark/copyright)
agreement. If you do not agree to abide by all the terms of this agreement,
you must cease using and return or destroy all copies of Project
Gutenberg-tm electronic works in your possession. If you paid a fee for
obtaining a copy of or access to a Project Gutenberg-tm electronic work
and you do not agree to be bound by the terms of this agreement, you may
obtain a refund from the person or entity to whom you paid the fee as set
forth in paragraph 1.E.8.
1.B. "Project Gutenberg" is a registered trademark. It may only be used on
or associated in any way with an electronic work by people who agree to be
bound by the terms of this agreement. There are a few things that you can
do with most Project Gutenberg-tm electronic works even without
complying with the full terms of this agreement. See paragraph 1.C below.
There are a lot of things you can do with Project Gutenberg-tm electronic
works if you follow the terms of this agreement and help preserve free
future access to Project Gutenberg-tm electronic works. See paragraph 1.E
below.
1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"
or PGLAF), owns a compilation copyright in the collection of Project
Gutenberg-tm electronic works. Nearly all the individual works in the
collection are in the public domain in the United States. If an individual
work is in the public domain in the United States and you are located in the
United States, we do not claim a right to prevent you from copying,
distributing, performing, displaying or creating derivative works based on
the work as long as all references to Project Gutenberg are removed. Of
course, we hope that you will support the Project Gutenberg-tm mission of
promoting free access to electronic works by freely sharing Project
Gutenberg-tm works in compliance with the terms of this agreement for
keeping the Project Gutenberg-tm name associated with the work. You can
easily comply with the terms of this agreement by keeping this work in the
same format with its attached full Project Gutenberg-tm License when you
share it without charge with others.

CHAPTER XXI

551

1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are in a
constant state of change. If you are outside the United States, check the
laws of your country in addition to the terms of this agreement before
downloading, copying, displaying, performing, distributing or creating
derivative works based on this work or any other Project Gutenberg-tm
work. The Foundation makes no representations concerning the copyright
status of any work in any country outside the United States.
1.E. Unless you have removed all references to Project Gutenberg:
1.E.1. The following sentence, with active links to, or other immediate
access to, the full Project Gutenberg-tm License must appear prominently
whenever any copy of a Project Gutenberg-tm work (any work on which
the phrase "Project Gutenberg" appears, or with which the phrase "Project
Gutenberg" is associated) is accessed, displayed, performed, viewed,
copied or distributed:
This eBook is for the use of anyone anywhere at no cost and with almost no
restrictions whatsoever. You may copy it, give it away or re-use it under the
terms of the Project Gutenberg License included with this eBook or online
at www.gutenberg.org
1.E.2. If an individual Project Gutenberg-tm electronic work is derived
from the public domain (does not contain a notice indicating that it is
posted with permission of the copyright holder), the work can be copied
and distributed to anyone in the United States without paying any fees or
charges. If you are redistributing or providing access to a work with the
phrase "Project Gutenberg" associated with or appearing on the work, you
must comply either with the requirements of paragraphs 1.E.1 through
1.E.7 or obtain permission for the use of the work and the Project
Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or 1.E.9.
1.E.3. If an individual Project Gutenberg-tm electronic work is posted with
the permission of the copyright holder, your use and distribution must
comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms

CHAPTER XXI

552

imposed by the copyright holder. Additional terms will be linked to the
Project Gutenberg-tm License for all works posted with the permission of
the copyright holder found at the beginning of this work.
1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm
License terms from this work, or any files containing a part of this work or
any other work associated with Project Gutenberg-tm.
1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without prominently
displaying the sentence set forth in paragraph 1.E.1 with active links or
immediate access to the full terms of the Project Gutenberg-tm License.
1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including any
word processing or hypertext form. However, if you provide access to or
distribute copies of a Project Gutenberg-tm work in a format other than
"Plain Vanilla ASCII" or other format used in the official version posted on
the official Project Gutenberg-tm web site (www.gutenberg.org), you must,
at no additional cost, fee or expense to the user, provide a copy, a means of
exporting a copy, or a means of obtaining a copy upon request, of the work
in its original "Plain Vanilla ASCII" or other form. Any alternate format
must include the full Project Gutenberg-tm License as specified in
paragraph 1.E.1.
1.E.7. Do not charge a fee for access to, viewing, displaying, performing,
copying or distributing any Project Gutenberg-tm works unless you comply
with paragraph 1.E.8 or 1.E.9.
1.E.8. You may charge a reasonable fee for copies of or providing access to
or distributing Project Gutenberg-tm electronic works provided that
- You pay a royalty fee of 20% of the gross profits you derive from the use
of Project Gutenberg-tm works calculated using the method you already
use to calculate your applicable taxes. The fee is owed to the owner of the
Project Gutenberg-tm trademark, but he has agreed to donate royalties

CHAPTER XXI

553

under this paragraph to the Project Gutenberg Literary Archive Foundation.
Royalty payments must be paid within 60 days following each date on
which you prepare (or are legally required to prepare) your periodic tax
returns. Royalty payments should be clearly marked as such and sent to the
Project Gutenberg Literary Archive Foundation at the address specified in
Section 4, "Information about donations to the Project Gutenberg Literary
Archive Foundation."
- You provide a full refund of any money paid by a user who notifies you in
writing (or by e-mail) within 30 days of receipt that s/he does not agree to
the terms of the full Project Gutenberg-tm License. You must require such
a user to return or destroy all copies of the works possessed in a physical
medium and discontinue all use of and all access to other copies of Project
Gutenberg-tm works.
- You provide, in accordance with paragraph 1.F.3, a full refund of any
money paid for a work or a replacement copy, if a defect in the electronic
work is discovered and reported to you within 90 days of receipt of the
work.
- You comply with all other terms of this agreement for free distribution of
Project Gutenberg-tm works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm
electronic work or group of works on different terms than are set forth in
this agreement, you must obtain permission in writing from both the Project
Gutenberg Literary Archive Foundation and Michael Hart, the owner of the
Project Gutenberg-tm trademark. Contact the Foundation as set forth in
Section 3 below.
1.F.
1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread public
domain works in creating the Project Gutenberg-tm collection. Despite
these efforts, Project Gutenberg-tm electronic works, and the medium on

CHAPTER XXI

554

which they may be stored, may contain "Defects," such as, but not limited
to, incomplete, inaccurate or corrupt data, transcription errors, a copyright
or other intellectual property infringement, a defective or damaged disk or
other medium, a computer virus, or computer codes that damage or cannot
be read by your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except
for the "Right of Replacement or Refund" described in paragraph 1.F.3, the
Project Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg-tm trademark, and any other party distributing a Project
Gutenberg-tm electronic work under this agreement, disclaim all liability to
you for damages, costs and expenses, including legal fees. YOU AGREE
THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT
EXCEPT THOSE PROVIDED IN PARAGRAPH F3. YOU AGREE
THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY
DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE
TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL,
PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE
NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you
discover a defect in this electronic work within 90 days of receiving it, you
can receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium with
your written explanation. The person or entity that provided you with the
defective work may elect to provide a replacement copy in lieu of a refund.
If you received the work electronically, the person or entity providing it to
you may choose to give you a second opportunity to receive the work
electronically in lieu of a refund. If the second copy is also defective, you
may demand a refund in writing without further opportunities to fix the
problem.
1.F.4. Except for the limited right of replacement or refund set forth in
paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER

CHAPTER XXI

555

WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO WARRANTIES OF MERCHANTIBILITY OR
FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or
the exclusion or limitation of certain types of damages. If any disclaimer or
limitation set forth in this agreement violates the law of the state applicable
to this agreement, the agreement shall be interpreted to make the maximum
disclaimer or limitation permitted by the applicable state law. The
invalidity or unenforceability of any provision of this agreement shall not
void the remaining provisions.
1.F.6. INDEMNITY
- You agree to indemnify and hold the Foundation, the trademark owner,
any agent or employee of the Foundation, anyone providing copies of
Project Gutenberg-tm electronic works in accordance with this agreement,
and any volunteers associated with the production, promotion and
distribution of Project Gutenberg-tm electronic works, harmless from all
liability, costs and expenses, including legal fees, that arise directly or
indirectly from any of the following which you do or cause to occur: (a)
distribution of this or any Project Gutenberg-tm work, (b) alteration,
modification, or additions or deletions to any Project Gutenberg-tm work,
and (c) any Defect you cause.
Section 2. Information about the Mission of Project Gutenberg-tm
Project Gutenberg-tm is synonymous with the free distribution of electronic
works in formats readable by the widest variety of computers including
obsolete, old, middle-aged and new computers. It exists because of the
efforts of hundreds of volunteers and donations from people in all walks of
life.
Volunteers and financial support to provide volunteers with the assistance
they need, are critical to reaching Project Gutenberg-tm's goals and
ensuring that the Project Gutenberg-tm collection will remain freely

CHAPTER XXI

556

available for generations to come. In 2001, the Project Gutenberg Literary
Archive Foundation was created to provide a secure and permanent future
for Project Gutenberg-tm and future generations. To learn more about the
Project Gutenberg Literary Archive Foundation and how your efforts and
donations can help, see Sections 3 and 4 and the Foundation web page at
http://www.pglaf.org.
Section 3. Information about the Project Gutenberg Literary Archive
Foundation
The Project Gutenberg Literary Archive Foundation is a non profit
501(c)(3) educational corporation organized under the laws of the state of
Mississippi and granted tax exempt status by the Internal Revenue Service.
The Foundation's EIN or federal tax identification number is 64-6221541.
Its 501(c)(3) letter is posted at http://pglaf.org/fundraising. Contributions to
the Project Gutenberg Literary Archive Foundation are tax deductible to the
full extent permitted by U.S. federal laws and your state's laws.
The Foundation's principal office is located at 4557 Melan Dr. S.
Fairbanks, AK, 99712., but its volunteers and employees are scattered
throughout numerous locations. Its business office is located at 809 North
1500 West, Salt Lake City, UT 84116, (801) 596-1887, email
[email protected]. Email contact links and up to date contact information
can be found at the Foundation's web site and official page at
http://pglaf.org
For additional contact information: Dr. Gregory B. Newby Chief Executive
and Director [email protected]
Section 4. Information about Donations to the Project Gutenberg Literary
Archive Foundation
Project Gutenberg-tm depends upon and cannot survive without wide
spread public support and donations to carry out its mission of increasing
the number of public domain and licensed works that can be freely
distributed in machine readable form accessible by the widest array of

CHAPTER XXI

557

equipment including outdated equipment. Many small donations ($1 to
$5,000) are particularly important to maintaining tax exempt status with the
IRS.
The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United States.
Compliance requirements are not uniform and it takes a considerable effort,
much paperwork and many fees to meet and keep up with these
requirements. We do not solicit donations in locations where we have not
received written confirmation of compliance. To SEND DONATIONS or
determine the status of compliance for any particular state visit
http://pglaf.org
While we cannot and do not solicit contributions from states where we have
not met the solicitation requirements, we know of no prohibition against
accepting unsolicited donations from donors in such states who approach us
with offers to donate.
International donations are gratefully accepted, but we cannot make any
statements concerning tax treatment of donations received from outside the
United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg Web pages for current donation
methods and addresses. Donations are accepted in a number of other ways
including checks, online payments and credit card donations. To donate,
please visit: http://pglaf.org/donate
Section 5. General Information About Project Gutenberg-tm electronic
works.
Professor Michael S. Hart is the originator of the Project Gutenberg-tm
concept of a library of electronic works that could be freely shared with
anyone. For thirty years, he produced and distributed Project Gutenberg-tm
eBooks with only a loose network of volunteer support.

CHAPTER XXI

558

Project Gutenberg-tm eBooks are often created from several printed
editions, all of which are confirmed as Public Domain in the U.S. unless a
copyright notice is included. Thus, we do not necessarily keep eBooks in
compliance with any particular paper edition.
Most people start at our Web site which has the main PG search facility:
http://www.gutenberg.org
This Web site includes information about Project Gutenberg-tm, including
how to make donations to the Project Gutenberg Literary Archive
Foundation, how to help produce our new eBooks, and how to subscribe to
our email newsletter to hear about new eBooks.
Psychology, by Robert S. Woodworth
A free ebook from http://manybooks.net/

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close